Descent modulus and applications

IF 1.7 2区 数学 Q1 MATHEMATICS Journal of Functional Analysis Pub Date : 2024-08-13 DOI:10.1016/j.jfa.2024.110626
Aris Daniilidis , Laurent Miclo , David Salas
{"title":"Descent modulus and applications","authors":"Aris Daniilidis ,&nbsp;Laurent Miclo ,&nbsp;David Salas","doi":"10.1016/j.jfa.2024.110626","DOIUrl":null,"url":null,"abstract":"<div><p>The norm of the gradient <span><math><mo>‖</mo><mi>∇</mi><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>‖</mo></math></span> measures the maximum descent of a real-valued smooth function <em>f</em> at <em>x</em>. For (nonsmooth) convex functions, this is expressed by the distance <span><math><mrow><mi>dist</mi></mrow><mo>(</mo><mn>0</mn><mo>,</mo><mo>∂</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></math></span> of the subdifferential to the origin, while for general real-valued functions defined on metric spaces by the notion of metric slope <span><math><mo>|</mo><mi>∇</mi><mi>f</mi><mo>|</mo><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. In this work we propose an axiomatic definition of descent modulus <span><math><mi>T</mi><mo>[</mo><mi>f</mi><mo>]</mo><mo>(</mo><mi>x</mi><mo>)</mo></math></span> of a real-valued function <em>f</em> at every point <em>x</em>, defined on a general (not necessarily metric) space. The definition encompasses all above instances as well as average descents for functions defined on probability spaces. We show that a large class of functions are completely determined by their descent modulus and corresponding critical values. This result is already surprising in the smooth case: a one-dimensional information (norm of the gradient) turns out to be almost as powerful as the knowledge of the full gradient mapping. In the nonsmooth case, the key element for this determination result is the break of symmetry induced by a downhill orientation, in the spirit of the definition of the metric slope. The particular case of functions defined on finite spaces is studied in the last section. In this case, we obtain an explicit classification of descent operators that are, in some sense, typical.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003148/pdfft?md5=c3c69cd4d272de9fe328368006f32de8&pid=1-s2.0-S0022123624003148-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003148","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The norm of the gradient f(x) measures the maximum descent of a real-valued smooth function f at x. For (nonsmooth) convex functions, this is expressed by the distance dist(0,f(x)) of the subdifferential to the origin, while for general real-valued functions defined on metric spaces by the notion of metric slope |f|(x). In this work we propose an axiomatic definition of descent modulus T[f](x) of a real-valued function f at every point x, defined on a general (not necessarily metric) space. The definition encompasses all above instances as well as average descents for functions defined on probability spaces. We show that a large class of functions are completely determined by their descent modulus and corresponding critical values. This result is already surprising in the smooth case: a one-dimensional information (norm of the gradient) turns out to be almost as powerful as the knowledge of the full gradient mapping. In the nonsmooth case, the key element for this determination result is the break of symmetry induced by a downhill orientation, in the spirit of the definition of the metric slope. The particular case of functions defined on finite spaces is studied in the last section. In this case, we obtain an explicit classification of descent operators that are, in some sense, typical.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
下降模量和应用
梯度的规范‖∇f(x)‖度量实值光滑函数 f 在 x 点的最大下降量。对于(非光滑)凸函数,可用子微分到原点的距离 dist(0,∂f(x)) 表示,而对于定义在度量空间上的一般实值函数,可用度量斜率 |∇f|(x)概念表示。在这项工作中,我们提出了实值函数 f 在一般(不一定是度量)空间上定义的每一点 x 上的下降模 T[f](x) 的公理定义。该定义包括上述所有实例以及定义在概率空间上的函数的平均下降模。我们证明,一大类函数完全由其下降模数和相应的临界值决定。在光滑情况下,这一结果已经令人吃惊:一维信息(梯度的规范)几乎与完整梯度映射的知识一样强大。在非光滑情况下,这一判定结果的关键因素是,根据度量斜率定义的精神,由下坡方向引起的对称性破坏。最后一节研究了定义在有限空间上的函数的特殊情况。在这种情况下,我们得到了在某种意义上具有典型性的下降算子的明确分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
期刊最新文献
Corrigendum to “Classifying decomposition and wavelet coorbit spaces using coarse geometry” [J. Funct. Anal. 283(9) (2022) 109637] Corrigendum to “Mourre theory for analytically fibered operators” [J. Funct. Anal. 152 (1) (1998) 202–219] On the Hankel transform of Bessel functions on complex numbers and explicit spectral formulae over the Gaussian field Weighted Dirichlet spaces that are de Branges-Rovnyak spaces with equivalent norms Operator ℓp → ℓq norms of random matrices with iid entries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1