Gang Xian , Wenxiang Yang , Yusong Tan , Jinghua Feng , Yuqi Li , Jian Zhang , Jie Yu
{"title":"Mobilizing underutilized storage nodes via job path: A job-aware file striping approach","authors":"Gang Xian , Wenxiang Yang , Yusong Tan , Jinghua Feng , Yuqi Li , Jian Zhang , Jie Yu","doi":"10.1016/j.parco.2024.103095","DOIUrl":null,"url":null,"abstract":"<div><p>Users’ limited understanding of the storage system architecture prevents them from fully utilizing the parallel I/O capability of the storage system, leading to a negative impact on the overall performance of supercomputers. Therefore, exploring effective strategies for utilizing parallel I/O capabilities is imperative. In this regard, we conduct an analysis of the workload on two production supercomputers’ Object Storage Targets (OSTs) and study the potential inefficient I/O patterns for high performance computing jobs. Our research findings indicate that under the traditional stripe settings that most supercomputers use to ensure stability, the real-time load on OSTs is severely unbalanced. This imbalance results in I/O requests that fail to fully utilize the available OSTs. To tackle this issue, we propose a job-aware optimization approach, which includes static and dynamic file striping. Static file striping optimizes all user jobs, whereas dynamic file striping employs clustering of job names and job paths to extract similarities among jobs and predict partially stripe-optimizable jobs for users. Additionally, a stripe recovery mechanism is employed to mitigate the negative impact of stripe misconfigurations. This approach appropriately adjusts the file stripe layout based on the job’s I/O pattern, allowing for better mobilization of underutilized OSTs to enhance parallel I/O capabilities. Through experimental verification, the number of OSTs that jobs can use has been increased, effectively improving the parallel I/O performance of the job without significantly affecting operational stability.</p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"121 ","pages":"Article 103095"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819124000334","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Users’ limited understanding of the storage system architecture prevents them from fully utilizing the parallel I/O capability of the storage system, leading to a negative impact on the overall performance of supercomputers. Therefore, exploring effective strategies for utilizing parallel I/O capabilities is imperative. In this regard, we conduct an analysis of the workload on two production supercomputers’ Object Storage Targets (OSTs) and study the potential inefficient I/O patterns for high performance computing jobs. Our research findings indicate that under the traditional stripe settings that most supercomputers use to ensure stability, the real-time load on OSTs is severely unbalanced. This imbalance results in I/O requests that fail to fully utilize the available OSTs. To tackle this issue, we propose a job-aware optimization approach, which includes static and dynamic file striping. Static file striping optimizes all user jobs, whereas dynamic file striping employs clustering of job names and job paths to extract similarities among jobs and predict partially stripe-optimizable jobs for users. Additionally, a stripe recovery mechanism is employed to mitigate the negative impact of stripe misconfigurations. This approach appropriately adjusts the file stripe layout based on the job’s I/O pattern, allowing for better mobilization of underutilized OSTs to enhance parallel I/O capabilities. Through experimental verification, the number of OSTs that jobs can use has been increased, effectively improving the parallel I/O performance of the job without significantly affecting operational stability.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications