Sound absorption characteristics of 3-dimensional printed biodegradable structure backed with luffa fiber
Schallabsorptionseigenschaften einer 3-dimensional gedruckten, biologisch abbaubaren Struktur mit Luffa-Faser-Rückseite
R. Tyagi, N. K. Jha, A. Tripathi, N. Ranjan, A. K. Srivastava, S. Kumar, R. Kumar
{"title":"Sound absorption characteristics of 3-dimensional printed biodegradable structure backed with luffa fiber\n Schallabsorptionseigenschaften einer 3-dimensional gedruckten, biologisch abbaubaren Struktur mit Luffa-Faser-Rückseite","authors":"R. Tyagi, N. K. Jha, A. Tripathi, N. Ranjan, A. K. Srivastava, S. Kumar, R. Kumar","doi":"10.1002/mawe.202300279","DOIUrl":null,"url":null,"abstract":"<p>In this work, an investigation has been carried out on the sound absorption properties of the microperforated composites prepared by filling natural luffa fiber and synthetic luffa fiber. These composite structures are created by 3-dimensional printing of polylactic acid, which exhibits excellent biodegradability. After preparing the structure, the micro-perforation is done at the top of the composite with the help of a heated cylindrical drill. During the printing process, the infill density (printing parameter) and type of luffa fiber (natural and synthetic) have been varied to find out its effect on acoustic properties. Finally, a comparative study is carried out among natural luffa fiber and without using natural luffa fiber. The results showed excellent sound absorption of luffa filled structure compared to an unfilled structure. Out of three different infilled densities, the density of 5 % revealed a maximum amount of absorption, suggesting the potential applications of these structures in the field of sound absorption.</p>","PeriodicalId":18366,"journal":{"name":"Materialwissenschaft und Werkstofftechnik","volume":"55 8","pages":"1092-1102"},"PeriodicalIF":1.2000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialwissenschaft und Werkstofftechnik","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202300279","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, an investigation has been carried out on the sound absorption properties of the microperforated composites prepared by filling natural luffa fiber and synthetic luffa fiber. These composite structures are created by 3-dimensional printing of polylactic acid, which exhibits excellent biodegradability. After preparing the structure, the micro-perforation is done at the top of the composite with the help of a heated cylindrical drill. During the printing process, the infill density (printing parameter) and type of luffa fiber (natural and synthetic) have been varied to find out its effect on acoustic properties. Finally, a comparative study is carried out among natural luffa fiber and without using natural luffa fiber. The results showed excellent sound absorption of luffa filled structure compared to an unfilled structure. Out of three different infilled densities, the density of 5 % revealed a maximum amount of absorption, suggesting the potential applications of these structures in the field of sound absorption.
期刊介绍:
Materialwissenschaft und Werkstofftechnik provides fundamental and practical information for those concerned with materials development, manufacture, and testing.
Both technical and economic aspects are taken into consideration in order to facilitate choice of the material that best suits the purpose at hand. Review articles summarize new developments and offer fresh insight into the various aspects of the discipline.
Recent results regarding material selection, use and testing are described in original articles, which also deal with failure treatment and investigation. Abstracts of new publications from other journals as well as lectures presented at meetings and reports about forthcoming events round off the journal.