Optimization of Thermal Conductivity and Latent Heat Capacity Using Fractional Factorial Approach for the Synthesis of Nano-Enhanced High-Performance Phase-Change Material
Man Mohan, Sheetal Kumar Dewangan, Kwan Lee, Byungmin Ahn
{"title":"Optimization of Thermal Conductivity and Latent Heat Capacity Using Fractional Factorial Approach for the Synthesis of Nano-Enhanced High-Performance Phase-Change Material","authors":"Man Mohan, Sheetal Kumar Dewangan, Kwan Lee, Byungmin Ahn","doi":"10.1155/2024/7490603","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This study systematically optimizes the synthesis parameters for nano-enhanced phase-change materials (NEPCMs) based on paraffin wax and copper oxide. The objective is to collectively improve both thermal conductivity and latent heat capacity. Unlike the previous research, the present approach considers all significant synthesis parameters simultaneously, employing a fractional factorial approach for efficient experimentation. By varying CuO nanoparticle sizes, paraffin wax melting temperatures, and mass fractions of CuO and surfactant in pure paraffin wax, the comprehensive thermal analysis reveals a maximum enhancement of 51.2% thermal conductivity compared to pure paraffin wax. In addition to thermal conductivity improvement, the applied optimization strategy identifies six NEPCM combinations, collectively enhancing thermal conductivity, latent heat of melting, and solidification. Among these, one NEPCM exhibits notable improvements of 13.39%, 6.9%, and 4.5% in thermal conductivity, latent heat of melting, and solidification, respectively, making it suitable for thermal energy storage systems due to combined enhanced thermal properties. Additionally, the ANOVA approach indicates the melting temperature of pure PCM as the most significant factor for thermal conductivity enhancement, with a contribution of 55.45%. The present study has a direct impact on improving thermal properties, specifically in thermal energy storage technology, making it relevant to the thermal management research community.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2024 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7490603","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/7490603","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study systematically optimizes the synthesis parameters for nano-enhanced phase-change materials (NEPCMs) based on paraffin wax and copper oxide. The objective is to collectively improve both thermal conductivity and latent heat capacity. Unlike the previous research, the present approach considers all significant synthesis parameters simultaneously, employing a fractional factorial approach for efficient experimentation. By varying CuO nanoparticle sizes, paraffin wax melting temperatures, and mass fractions of CuO and surfactant in pure paraffin wax, the comprehensive thermal analysis reveals a maximum enhancement of 51.2% thermal conductivity compared to pure paraffin wax. In addition to thermal conductivity improvement, the applied optimization strategy identifies six NEPCM combinations, collectively enhancing thermal conductivity, latent heat of melting, and solidification. Among these, one NEPCM exhibits notable improvements of 13.39%, 6.9%, and 4.5% in thermal conductivity, latent heat of melting, and solidification, respectively, making it suitable for thermal energy storage systems due to combined enhanced thermal properties. Additionally, the ANOVA approach indicates the melting temperature of pure PCM as the most significant factor for thermal conductivity enhancement, with a contribution of 55.45%. The present study has a direct impact on improving thermal properties, specifically in thermal energy storage technology, making it relevant to the thermal management research community.
期刊介绍:
The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability.
IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents:
-Biofuels and alternatives
-Carbon capturing and storage technologies
-Clean coal technologies
-Energy conversion, conservation and management
-Energy storage
-Energy systems
-Hybrid/combined/integrated energy systems for multi-generation
-Hydrogen energy and fuel cells
-Hydrogen production technologies
-Micro- and nano-energy systems and technologies
-Nuclear energy
-Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass)
-Smart energy system