New Time Domain Decomposition Methods for Parabolic Optimal Control Problems I: Dirichlet–Neumann and Neumann–Dirichlet Algorithms

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Numerical Analysis Pub Date : 2024-08-23 DOI:10.1137/23m1584502
Martin J. Gander, Liu-Di Lu
{"title":"New Time Domain Decomposition Methods for Parabolic Optimal Control Problems I: Dirichlet–Neumann and Neumann–Dirichlet Algorithms","authors":"Martin J. Gander, Liu-Di Lu","doi":"10.1137/23m1584502","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 2048-2070, August 2024. <br/> Abstract. We present new Dirichlet–Neumann and Neumann–Dirichlet algorithms with a time domain decomposition applied to unconstrained parabolic optimal control problems. After a spatial semidiscretization, we use the Lagrange multiplier approach to derive a coupled forward-backward optimality system, which can then be solved using a time domain decomposition. Due to the forward-backward structure of the optimality system, three variants can be found for the Dirichlet–Neumann and Neumann–Dirichlet algorithms. We analyze their convergence behavior and determine the optimal relaxation parameter for each algorithm. Our analysis reveals that the most natural algorithms are actually only good smoothers, and there are better choices which lead to efficient solvers. We illustrate our analysis with numerical experiments.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"4 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1584502","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 2048-2070, August 2024.
Abstract. We present new Dirichlet–Neumann and Neumann–Dirichlet algorithms with a time domain decomposition applied to unconstrained parabolic optimal control problems. After a spatial semidiscretization, we use the Lagrange multiplier approach to derive a coupled forward-backward optimality system, which can then be solved using a time domain decomposition. Due to the forward-backward structure of the optimality system, three variants can be found for the Dirichlet–Neumann and Neumann–Dirichlet algorithms. We analyze their convergence behavior and determine the optimal relaxation parameter for each algorithm. Our analysis reveals that the most natural algorithms are actually only good smoothers, and there are better choices which lead to efficient solvers. We illustrate our analysis with numerical experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抛物线最优控制问题的新时域分解方法 I. Dirichlet-Neumann 和 Neumann-Dirichlet 算法Dirichlet-Neumann 和 Neumann-Dirichlet 算法
SIAM 数值分析期刊》第 62 卷第 4 期第 2048-2070 页,2024 年 8 月。 摘要。我们提出了新的 Dirichlet-Neumann 和 Neumann-Dirichlet 时域分解算法,应用于无约束抛物线最优控制问题。在空间半具体化之后,我们使用拉格朗日乘数方法推导出一个耦合的前向后向最优系统,然后可以使用时域分解来求解该系统。由于优化系统的前向-后向结构,可以为 Dirichlet-Neumann 算法和 Neumann-Dirichlet 算法找到三种变体。我们分析了它们的收敛行为,并确定了每种算法的最佳松弛参数。我们的分析表明,最自然的算法实际上只是很好的平滑器,还有更好的选择能带来高效的求解器。我们通过数值实验来说明我们的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
期刊最新文献
On the Existence of Minimizers in Shallow Residual ReLU Neural Network Optimization Landscapes A Domain Decomposition Method for Stochastic Evolution Equations New Time Domain Decomposition Methods for Parabolic Optimal Control Problems II: Neumann–Neumann Algorithms The Mean-Field Ensemble Kalman Filter: Near-Gaussian Setting The Lanczos Tau Framework for Time-Delay Systems: Padé Approximation and Collocation Revisited
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1