Investigating the lipid profile of Anopheles stephensi mosquitoes across developmental life stages

IF 2.2 2区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Comparative Biochemistry and Physiology D-Genomics & Proteomics Pub Date : 2024-08-14 DOI:10.1016/j.cbd.2024.101312
Gabriela Ramirez , Corey Broeckling , MaKala Herndon , Madison Stoltz , Gregory D. Ebel , Karen M. Dobos
{"title":"Investigating the lipid profile of Anopheles stephensi mosquitoes across developmental life stages","authors":"Gabriela Ramirez ,&nbsp;Corey Broeckling ,&nbsp;MaKala Herndon ,&nbsp;Madison Stoltz ,&nbsp;Gregory D. Ebel ,&nbsp;Karen M. Dobos","doi":"10.1016/j.cbd.2024.101312","DOIUrl":null,"url":null,"abstract":"<div><p>Holometabolous insects undergo a distinct transition in their development, tightly correlated with shifting feeding patterns from larval stages and some adult phases to non-feeding phases as pupae and during other adult phases. Furthermore, the intricate life cycle of mosquitoes involves a sequence of developmental stages influenced by aquatic and terrestrial factors, demanding precise energy resource orchestration. Lipids serve multifaceted roles, encompassing energy storage, membrane structure, and participation in signal transduction and molecular recognition processes. A significant gap in the current research landscape is the need for a comprehensive study exploring the lipid repertoire throughout the developmental stages of <em>Anopheles stephensi</em> mosquitoes. We undertook an analysis of the <em>An. stephensi</em> metabolome across all life stages. We hypothesized that <em>An. stephensi</em> mosquitoes will have unique lipid metabolite markers for each life stage. A specific extraction and LC-MS based lipidomic approach was used to test this hypothesis. Our findings demonstrated that our methods were successful, with lipids comprising 62.15 % of the analyzed metabolome. Additionally, phospholipids (PL), lysophospholipids (LPL), sphingomyelin (SM), and triglycerides (TG) were abundant and dynamic across all life stages. Interestingly, comparison between the L1 and L2 lipidome revealed a dominant pattern of specific TGs in decreased abundance between these two life stages. Lastly, 20-hydroxyecdysone (20E), was found to be present in similar abundance across all 4 larval stages. These data indicate that there may be lipid metabolome pathways serving unique roles during mosquito development that may be used to explore laboratory management of colonies, parasite resistance, and environmental adaptation.</p></div>","PeriodicalId":55235,"journal":{"name":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1744117X24001254/pdfft?md5=53819375cc9c819d5d4f09fb40eec489&pid=1-s2.0-S1744117X24001254-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X24001254","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Holometabolous insects undergo a distinct transition in their development, tightly correlated with shifting feeding patterns from larval stages and some adult phases to non-feeding phases as pupae and during other adult phases. Furthermore, the intricate life cycle of mosquitoes involves a sequence of developmental stages influenced by aquatic and terrestrial factors, demanding precise energy resource orchestration. Lipids serve multifaceted roles, encompassing energy storage, membrane structure, and participation in signal transduction and molecular recognition processes. A significant gap in the current research landscape is the need for a comprehensive study exploring the lipid repertoire throughout the developmental stages of Anopheles stephensi mosquitoes. We undertook an analysis of the An. stephensi metabolome across all life stages. We hypothesized that An. stephensi mosquitoes will have unique lipid metabolite markers for each life stage. A specific extraction and LC-MS based lipidomic approach was used to test this hypothesis. Our findings demonstrated that our methods were successful, with lipids comprising 62.15 % of the analyzed metabolome. Additionally, phospholipids (PL), lysophospholipids (LPL), sphingomyelin (SM), and triglycerides (TG) were abundant and dynamic across all life stages. Interestingly, comparison between the L1 and L2 lipidome revealed a dominant pattern of specific TGs in decreased abundance between these two life stages. Lastly, 20-hydroxyecdysone (20E), was found to be present in similar abundance across all 4 larval stages. These data indicate that there may be lipid metabolome pathways serving unique roles during mosquito development that may be used to explore laboratory management of colonies, parasite resistance, and environmental adaptation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调查按蚊不同发育生命阶段的脂质特征
全代谢昆虫在发育过程中经历了一个明显的过渡阶段,与从幼虫阶段和某些成虫阶段到蛹和其他成虫阶段的非进食阶段的进食模式转变密切相关。此外,蚊子错综复杂的生命周期涉及一系列受水生和陆生因素影响的发育阶段,需要精确的能量资源协调。脂质的作用是多方面的,包括能量储存、膜结构以及参与信号转导和分子识别过程。目前研究领域的一个重大空白是,需要进行一项全面的研究,探索按蚊在整个发育阶段的脂质复合物。我们对史蒂芬斯蚊各个生命阶段的代谢组进行了分析。我们假设,在每个生命阶段,史蒂芬斯蚊都有独特的脂质代谢物标记。我们采用了一种基于特定提取和 LC-MS 的脂质组学方法来验证这一假设。研究结果表明我们的方法是成功的,脂质占分析代谢组的 62.15%。此外,磷脂(PL)、溶血磷脂(LPL)、鞘磷脂(SM)和甘油三酯(TG)在所有生命阶段都很丰富且具有活力。有趣的是,对 L1 和 L2 脂质体进行比较后发现,在这两个生命阶段,特定甘油三酯的丰度呈下降趋势。最后,20-羟基蜕皮激素(20E)在所有 4 个幼虫阶段的含量相似。这些数据表明,在蚊子的发育过程中,可能有脂质代谢组途径发挥着独特的作用,可用于探索实验室对蚊群的管理、寄生虫抗性和环境适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.10
自引率
3.30%
发文量
69
审稿时长
33 days
期刊介绍: Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology. Part D: Genomics and Proteomics (CBPD), focuses on “omics” approaches to physiology, including comparative and functional genomics, metagenomics, transcriptomics, proteomics, metabolomics, and lipidomics. Most studies employ “omics” and/or system biology to test specific hypotheses about molecular and biochemical mechanisms underlying physiological responses to the environment. We encourage papers that address fundamental questions in comparative physiology and biochemistry rather than studies with a focus that is purely technical, methodological or descriptive in nature.
期刊最新文献
Construction and integrative analysis of miRNA-mRNA response to salinity stress in Oreochromis mossambicus cells Revealing the adaptation mechanism of different color morphs of sea cucumber Apostichopus japonicus to light intensities from the perspective of metabolomics Transcriptome analysis uncovers the expression of genes associated with growth in the gills and muscles of white shrimp (Litopenaeus vannamei) with different growth rates Effects of high-protein feeds on growth, free amino acid metabolism and protein metabolism-related genes in larvae and juveniles of rice flower carp (Procypris merus) Comparative analysis of intestinal structure, enzyme activity, intestinal microbiota and gene expression in different segments of pufferfish (Takifugu Obscurus)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1