A comprehensive survey of text classification techniques and their research applications: Observational and experimental insights

IF 13.3 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Computer Science Review Pub Date : 2024-08-23 DOI:10.1016/j.cosrev.2024.100664
Kamal Taha , Paul D. Yoo , Chan Yeun , Dirar Homouz , Aya Taha
{"title":"A comprehensive survey of text classification techniques and their research applications: Observational and experimental insights","authors":"Kamal Taha ,&nbsp;Paul D. Yoo ,&nbsp;Chan Yeun ,&nbsp;Dirar Homouz ,&nbsp;Aya Taha","doi":"10.1016/j.cosrev.2024.100664","DOIUrl":null,"url":null,"abstract":"<div><p>The exponential growth of textual data presents substantial challenges in management and analysis, notably due to high storage and processing costs. Text classification, a vital aspect of text mining, provides robust solutions by enabling efficient categorization and organization of text data. These techniques allow individuals, researchers, and businesses to derive meaningful patterns and insights from large volumes of text. This survey paper introduces a comprehensive taxonomy specifically designed for text classification based on research fields. The taxonomy is structured into hierarchical levels: research field-based category, research field-based sub-category, methodology-based technique, methodology sub-technique, and research field applications. We employ a dual evaluation approach: empirical and experimental. Empirically, we assess text classification techniques across four critical criteria. Experimentally, we compare and rank the methodology sub-techniques within the same methodology technique and within the same overall research field sub-category. This structured taxonomy, coupled with thorough evaluations, provides a detailed and nuanced understanding of text classification algorithms and their applications, empowering researchers to make informed decisions based on precise, field-specific insights.</p></div>","PeriodicalId":48633,"journal":{"name":"Computer Science Review","volume":"54 ","pages":"Article 100664"},"PeriodicalIF":13.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1574013724000480/pdfft?md5=d276b7a8b6796ecd0218ecd68c33f3ff&pid=1-s2.0-S1574013724000480-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science Review","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574013724000480","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The exponential growth of textual data presents substantial challenges in management and analysis, notably due to high storage and processing costs. Text classification, a vital aspect of text mining, provides robust solutions by enabling efficient categorization and organization of text data. These techniques allow individuals, researchers, and businesses to derive meaningful patterns and insights from large volumes of text. This survey paper introduces a comprehensive taxonomy specifically designed for text classification based on research fields. The taxonomy is structured into hierarchical levels: research field-based category, research field-based sub-category, methodology-based technique, methodology sub-technique, and research field applications. We employ a dual evaluation approach: empirical and experimental. Empirically, we assess text classification techniques across four critical criteria. Experimentally, we compare and rank the methodology sub-techniques within the same methodology technique and within the same overall research field sub-category. This structured taxonomy, coupled with thorough evaluations, provides a detailed and nuanced understanding of text classification algorithms and their applications, empowering researchers to make informed decisions based on precise, field-specific insights.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全面考察文本分类技术及其研究应用:观察与实验启示
文本数据的指数级增长给管理和分析带来了巨大挑战,主要原因是存储和处理成本高昂。文本分类是文本挖掘的一个重要方面,它通过对文本数据进行有效的分类和组织,提供了强大的解决方案。这些技术使个人、研究人员和企业能够从大量文本中获得有意义的模式和见解。本调查论文介绍了一种专门为基于研究领域的文本分类而设计的综合分类法。该分类法分为多个层次:基于研究领域的类别、基于研究领域的子类别、基于方法论的技术、方法论子技术和研究领域应用。我们采用了双重评估方法:实证和实验。在实证方面,我们根据四个关键标准对文本分类技术进行评估。在实验方面,我们对同一方法技术中的方法子技术和同一研究领域子类别中的方法子技术进行比较和排序。这种结构化的分类法与全面的评估相结合,提供了对文本分类算法及其应用的细致入微的了解,使研究人员能够根据精确的、特定领域的见解做出明智的决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Science Review
Computer Science Review Computer Science-General Computer Science
CiteScore
32.70
自引率
0.00%
发文量
26
审稿时长
51 days
期刊介绍: Computer Science Review, a publication dedicated to research surveys and expository overviews of open problems in computer science, targets a broad audience within the field seeking comprehensive insights into the latest developments. The journal welcomes articles from various fields as long as their content impacts the advancement of computer science. In particular, articles that review the application of well-known Computer Science methods to other areas are in scope only if these articles advance the fundamental understanding of those methods.
期刊最新文献
A comprehensive survey of Federated Intrusion Detection Systems: Techniques, challenges and solutions Knowledge graph representation learning: A comprehensive and experimental overview A comprehensive review of usage control frameworks Integrating Explainable AI with Federated Learning for Next-Generation IoT: A comprehensive review and prospective insights Cloud continuum testbeds and next-generation ICTs: Trends, challenges, and perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1