Age-related increase of CD38 directs osteoclastogenic potential of monocytic myeloid-derived suppressor cells through mitochondrial dysfunction in male mice.

IF 8 1区 医学 Q1 CELL BIOLOGY Aging Cell Pub Date : 2024-08-23 DOI:10.1111/acel.14298
Ramkumar Thiyagarajan, Lixia Zhang, Omar D Glover, Kyu Hwan Kwack, Sara Ahmed, Emma Murray, Nanda Kumar Yellapu, Jonathan Bard, Kenneth L Seldeen, Spencer R Rosario, Bruce R Troen, Keith L Kirkwood
{"title":"Age-related increase of CD38 directs osteoclastogenic potential of monocytic myeloid-derived suppressor cells through mitochondrial dysfunction in male mice.","authors":"Ramkumar Thiyagarajan, Lixia Zhang, Omar D Glover, Kyu Hwan Kwack, Sara Ahmed, Emma Murray, Nanda Kumar Yellapu, Jonathan Bard, Kenneth L Seldeen, Spencer R Rosario, Bruce R Troen, Keith L Kirkwood","doi":"10.1111/acel.14298","DOIUrl":null,"url":null,"abstract":"<p><p>An aged immune system undergoes substantial changes where myelopoiesis dominates within the bone marrow. Monocytic-MDSCs (M-MDSCs) have been found to play an important role in osteoclastogenesis and bone resorption. In this study, we sought to provide a more comprehensive understanding of the osteoclastogenic potential of bone marrow M-MDSCs during normal aging through transcriptomic and metabolic changes. Using young mature and aged mice, detailed immunophenotypic analyses of myeloid cells revealed that the M-MDSCs were not increased in bone marrow, however M-MDSCS were significantly expanded in peripheral tissues. Although aged mice exhibited a similar number of M-MDSCs in bone marrow, these M-MDSCs had significantly higher osteoclastogenic potential and greater demineralization activity. Intriguingly, osteoclast progenitors from aged bone marrow M-MDSCs exhibited greater mitochondrial respiration rate and glucose metabolism. Further, transcriptomic analyses revealed the upregulation of mitochondrial oxidative phosphorylation and glucose metabolism genes. Interestingly, there was 8-fold increase in Cd38 mRNA gene expression, consistent with the Mouse Aging Cell Atlas transcriptomic database, and confirmed by qRT-PCR. CD38 regulates NAD<sup>+</sup> availability, and 78c, a small molecule inhibitor of CD38, reduced the mitochondrial oxygen consumption rate and glucose metabolism and inhibited the osteoclastogenic potential of aged mice bone marrow-derived M-MDSCs. These results indicate that the age-related increase in Cd38 expression in M-MDSCs bias the transcriptome of M-MDSCs towards osteoclastogenesis. This enhanced understanding of the mechanistic underpinnings of M-MDSCs and their osteoclastogenesis during aging could lead to new therapeutic approaches for age-related bone loss and promote healthy aging.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14298","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

An aged immune system undergoes substantial changes where myelopoiesis dominates within the bone marrow. Monocytic-MDSCs (M-MDSCs) have been found to play an important role in osteoclastogenesis and bone resorption. In this study, we sought to provide a more comprehensive understanding of the osteoclastogenic potential of bone marrow M-MDSCs during normal aging through transcriptomic and metabolic changes. Using young mature and aged mice, detailed immunophenotypic analyses of myeloid cells revealed that the M-MDSCs were not increased in bone marrow, however M-MDSCS were significantly expanded in peripheral tissues. Although aged mice exhibited a similar number of M-MDSCs in bone marrow, these M-MDSCs had significantly higher osteoclastogenic potential and greater demineralization activity. Intriguingly, osteoclast progenitors from aged bone marrow M-MDSCs exhibited greater mitochondrial respiration rate and glucose metabolism. Further, transcriptomic analyses revealed the upregulation of mitochondrial oxidative phosphorylation and glucose metabolism genes. Interestingly, there was 8-fold increase in Cd38 mRNA gene expression, consistent with the Mouse Aging Cell Atlas transcriptomic database, and confirmed by qRT-PCR. CD38 regulates NAD+ availability, and 78c, a small molecule inhibitor of CD38, reduced the mitochondrial oxygen consumption rate and glucose metabolism and inhibited the osteoclastogenic potential of aged mice bone marrow-derived M-MDSCs. These results indicate that the age-related increase in Cd38 expression in M-MDSCs bias the transcriptome of M-MDSCs towards osteoclastogenesis. This enhanced understanding of the mechanistic underpinnings of M-MDSCs and their osteoclastogenesis during aging could lead to new therapeutic approaches for age-related bone loss and promote healthy aging.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与年龄相关的 CD38 增加通过线粒体功能障碍引导雄性小鼠单核细胞髓源性抑制细胞的破骨细胞生成潜能。
衰老的免疫系统会发生重大变化,骨髓造血在骨髓中占主导地位。研究发现,单核细胞-骨髓造血干细胞(M-MDSCs)在破骨细胞生成和骨吸收过程中发挥着重要作用。在本研究中,我们试图通过转录组学和代谢变化,更全面地了解骨髓 M-MDSCs 在正常衰老过程中的破骨细胞生成潜力。通过对幼年成熟小鼠和老年小鼠的髓系细胞进行详细的免疫表型分析,发现骨髓中的 M-MDSCs 并未增加,但外周组织中的 M-MDSCS 显著增加。虽然老年小鼠骨髓中的 M-MDSC 数量相似,但这些 M-MDSC 的破骨细胞生成潜能和脱钙活性明显更高。耐人寻味的是,来自老年骨髓间充质干细胞的破骨细胞祖细胞表现出更高的线粒体呼吸速率和葡萄糖代谢。此外,转录组分析显示线粒体氧化磷酸化和葡萄糖代谢基因上调。有趣的是,Cd38 mRNA基因表达量增加了8倍,这与小鼠衰老细胞图谱转录组数据库一致,并经qRT-PCR证实。CD38 可调节 NAD+ 的可用性,CD38 小分子抑制剂 78c 可降低线粒体耗氧率和葡萄糖代谢,抑制老年小鼠骨髓 M-MDSCs 的破骨细胞生成潜能。这些结果表明,M-MDSCs 中与年龄相关的 Cd38 表达增加会使 M-MDSCs 的转录组偏向于破骨细胞生成。加深对衰老过程中M-MDSCs及其破骨细胞生成机理基础的了解,可为治疗与年龄相关的骨质流失和促进健康衰老提供新的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aging Cell
Aging Cell Biochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍: Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health. The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include: Academic Search (EBSCO Publishing) Academic Search Alumni Edition (EBSCO Publishing) Academic Search Premier (EBSCO Publishing) Biological Science Database (ProQuest) CAS: Chemical Abstracts Service (ACS) Embase (Elsevier) InfoTrac (GALE Cengage) Ingenta Select ISI Alerting Services Journal Citation Reports/Science Edition (Clarivate Analytics) MEDLINE/PubMed (NLM) Natural Science Collection (ProQuest) PubMed Dietary Supplement Subset (NLM) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) Web of Science (Clarivate Analytics) Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.
期刊最新文献
Multiomic profiling reveals timing of menopause predicts prefrontal cortex aging and cognitive function. Elevated N-glycosylated cathepsin L impairs oocyte function and contributes to oocyte senescence during reproductive aging. TMEM16F regulates pathologic α-synuclein secretion and spread in cellular and mouse models of Parkinson's disease. Microglia-derived Galectin-9 drives amyloid-β pathology in Alzheimer's disease. Endothelial cell-specific progerin expression does not cause cardiovascular alterations and premature death.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1