Sean A Fischer, Steven J Roeters, Heleen Meuzelaar, Sander Woutersen, Tobias Weidner, Jim Pfaendtner
{"title":"Estimation of vibrational spectra of Trp-cage protein from nonequilibrium metadynamics simulations.","authors":"Sean A Fischer, Steven J Roeters, Heleen Meuzelaar, Sander Woutersen, Tobias Weidner, Jim Pfaendtner","doi":"10.1016/j.bpj.2024.08.015","DOIUrl":null,"url":null,"abstract":"<p><p>The development of methods that allow a structural interpretation of linear and nonlinear vibrational spectra is of great importance, both for spectroscopy and for optimizing force field quality. The experimentally measured signals are ensemble averages over all accessible configurations, which complicates spectral calculations. To account for this, we present a recipe for calculating vibrational amide-I spectra of proteins based on metadynamics molecular dynamics simulations. For each frame, a one-exciton Hamiltonian is set up for the backbone amide groups, in which the couplings are estimated with the transition-charge coupling model for nonnearest neighbors, and with a parametrized map of ab initio calculations that give the coupling as a function of the dihedral angles for nearest neighbors. The local-mode frequency variations due to environmental factors such as hydrogen bonds are modeled by exploiting the linear relationship between the amide C-O bond length and the amide-I frequency. The spectra are subsequently calculated while taking into account the equilibrium statistical weights of the frames that are determined using a previously published reweighting procedure. By implementing all these steps in an efficient Fortran code, the spectra can be averaged over very large amounts of structures, thereby extensively covering the phase space of proteins. Using this recipe, the spectral responses of 2.5 million frames of a metadynamics simulation of the miniprotein Trp-cage are averaged to reproduce the experimental temperature-dependent IR spectra very well. The spectral calculations provide new insight into the origin of the various spectral signatures (which are typically challenging to disentangle in the congested amide-I region), and allow for a direct structural interpretation of the experimental spectra and for validation of the molecular dynamics simulations of ensembles.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":"3500-3506"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494488/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.08.015","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The development of methods that allow a structural interpretation of linear and nonlinear vibrational spectra is of great importance, both for spectroscopy and for optimizing force field quality. The experimentally measured signals are ensemble averages over all accessible configurations, which complicates spectral calculations. To account for this, we present a recipe for calculating vibrational amide-I spectra of proteins based on metadynamics molecular dynamics simulations. For each frame, a one-exciton Hamiltonian is set up for the backbone amide groups, in which the couplings are estimated with the transition-charge coupling model for nonnearest neighbors, and with a parametrized map of ab initio calculations that give the coupling as a function of the dihedral angles for nearest neighbors. The local-mode frequency variations due to environmental factors such as hydrogen bonds are modeled by exploiting the linear relationship between the amide C-O bond length and the amide-I frequency. The spectra are subsequently calculated while taking into account the equilibrium statistical weights of the frames that are determined using a previously published reweighting procedure. By implementing all these steps in an efficient Fortran code, the spectra can be averaged over very large amounts of structures, thereby extensively covering the phase space of proteins. Using this recipe, the spectral responses of 2.5 million frames of a metadynamics simulation of the miniprotein Trp-cage are averaged to reproduce the experimental temperature-dependent IR spectra very well. The spectral calculations provide new insight into the origin of the various spectral signatures (which are typically challenging to disentangle in the congested amide-I region), and allow for a direct structural interpretation of the experimental spectra and for validation of the molecular dynamics simulations of ensembles.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.