Next-generation lung cancer pathology: Development and validation of diagnostic and prognostic algorithms.

IF 11.7 1区 医学 Q1 CELL BIOLOGY Cell Reports Medicine Pub Date : 2024-09-17 Epub Date: 2024-08-22 DOI:10.1016/j.xcrm.2024.101697
Carina Kludt, Yuan Wang, Waleed Ahmad, Andrey Bychkov, Junya Fukuoka, Nadine Gaisa, Mark Kühnel, Danny Jonigk, Alexey Pryalukhin, Fabian Mairinger, Franziska Klein, Anne Maria Schultheis, Alexander Seper, Wolfgang Hulla, Johannes Brägelmann, Sebastian Michels, Sebastian Klein, Alexander Quaas, Reinhard Büttner, Yuri Tolkach
{"title":"Next-generation lung cancer pathology: Development and validation of diagnostic and prognostic algorithms.","authors":"Carina Kludt, Yuan Wang, Waleed Ahmad, Andrey Bychkov, Junya Fukuoka, Nadine Gaisa, Mark Kühnel, Danny Jonigk, Alexey Pryalukhin, Fabian Mairinger, Franziska Klein, Anne Maria Schultheis, Alexander Seper, Wolfgang Hulla, Johannes Brägelmann, Sebastian Michels, Sebastian Klein, Alexander Quaas, Reinhard Büttner, Yuri Tolkach","doi":"10.1016/j.xcrm.2024.101697","DOIUrl":null,"url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors. In this study, we develop a clinically useful computational pathology platform for NSCLC that can be a foundation for multiple downstream applications and provide immediate value for patient care optimization and individualization. We train the primary multi-class tissue segmentation algorithm on a substantial, high-quality, manually annotated dataset of whole-slide images with lung adenocarcinoma and squamous cell carcinomas. We investigate two downstream applications. NSCLC subtyping algorithm is trained and validated using a large, multi-institutional (n = 6), multi-scanner (n = 5), international cohort of NSCLC cases (slides/patients 4,097/1,527). Moreover, we develop four AI-derived, fully explainable, quantitative, prognostic parameters (based on tertiary lymphoid structure and necrosis assessment) and validate them for different clinical endpoints. The computational platform enables the high-precision, quantitative analysis of H&E-stained slides. The developed prognostic parameters facilitate robust and independent risk stratification of patients with NSCLC.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524894/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2024.101697","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors. In this study, we develop a clinically useful computational pathology platform for NSCLC that can be a foundation for multiple downstream applications and provide immediate value for patient care optimization and individualization. We train the primary multi-class tissue segmentation algorithm on a substantial, high-quality, manually annotated dataset of whole-slide images with lung adenocarcinoma and squamous cell carcinomas. We investigate two downstream applications. NSCLC subtyping algorithm is trained and validated using a large, multi-institutional (n = 6), multi-scanner (n = 5), international cohort of NSCLC cases (slides/patients 4,097/1,527). Moreover, we develop four AI-derived, fully explainable, quantitative, prognostic parameters (based on tertiary lymphoid structure and necrosis assessment) and validate them for different clinical endpoints. The computational platform enables the high-precision, quantitative analysis of H&E-stained slides. The developed prognostic parameters facilitate robust and independent risk stratification of patients with NSCLC.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新一代肺癌病理学:诊断和预后算法的开发与验证。
非小细胞肺癌(NSCLC)是最常见的恶性肿瘤之一。在本研究中,我们为 NSCLC 开发了一个临床有用的计算病理学平台,该平台可作为多种下游应用的基础,并为患者护理优化和个体化提供直接价值。我们在大量高质量、人工标注的肺腺癌和鳞癌全切片图像数据集上训练了主要的多类组织分割算法。我们研究了两种下游应用。使用一个大型、多机构(n = 6)、多扫描仪(n = 5)、国际 NSCLC 病例队列(切片/患者 4,097/1,527 例)对 NSCLC 亚型算法进行了训练和验证。此外,我们还开发了四个人工智能衍生的、完全可解释的定量预后参数(基于三级淋巴结构和坏死评估),并针对不同的临床终点进行了验证。该计算平台可对 H&E 染色切片进行高精度定量分析。所开发的预后参数有助于对 NSCLC 患者进行可靠、独立的风险分层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Reports Medicine
Cell Reports Medicine Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍: Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine. Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.
期刊最新文献
Concurrent SOS1 and MEK suppression inhibits signaling and growth of NF1-null melanoma. Degradation of IKZF1 prevents epigenetic progression of T cell exhaustion in an antigen-specific assay. Bifidobacteria with indole-3-lactic acid-producing capacity exhibit psychobiotic potential via reducing neuroinflammation. Lnc-H19-derived protein shapes the immunosuppressive microenvironment of glioblastoma. Effect of remote ischemic preconditioning on cerebral circulation time in severe carotid artery stenosis: Results from the RIC-CCT trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1