KVX-053, a Protein Tyrosine Phosphatase 4A3 inhibitor, ameliorates SARS-CoV-2 Spike protein subunit 1 - induced acute lung injury in mice.

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY Journal of Pharmacology and Experimental Therapeutics Pub Date : 2024-08-23 DOI:10.1124/jpet.124.002154
Pavel A Solopov, Ruben Manuel Luciano Colunga Biancatelli, Tierney Day, Betsy Gregory, Elizabeth R Sharlow, John S Lazo, John D Catravas
{"title":"KVX-053, a Protein Tyrosine Phosphatase 4A3 inhibitor, ameliorates SARS-CoV-2 Spike protein subunit 1 - induced acute lung injury in mice.","authors":"Pavel A Solopov, Ruben Manuel Luciano Colunga Biancatelli, Tierney Day, Betsy Gregory, Elizabeth R Sharlow, John S Lazo, John D Catravas","doi":"10.1124/jpet.124.002154","DOIUrl":null,"url":null,"abstract":"<p><p>The Acute Respiratory Distress Syndrome (ARDS), often preceded by acute lung injury (ALI), is characterized by the accumulation of inflammatory fluid in the lung alveoli, leaky alveolar epithelium and endothelium, and overexpression of pro-inflammatory cytokines. This progression from ALI to ARDS is a major contributor to the high mortality observed in COVID-19 patients. The Spike protein of SARS-CoV-2 binds to lung ACE2 and, in addition to facilitating viral cell entry, it plays an important role in the development of ALI and ARDS, especially in the later phases of COVID-19 as well as long COVID. Protein tyrosine phosphatase (PTP) 4A3 is a key mediator of ARDS pathology. This study tested the hypothesis that targeting PTP4A3 would prevent COVID-19 associated ALI. Intratracheal administration of SARS-CoV-2 Spike protein Subunit 1 to K18-hACE2 transgenic mice expressing human ACE2 elicited pulmonary and systemic inflammation, leaky alveoli, overexpression of cytokines, structural lung injury and lung dysfunction; all these symptoms were ameliorated by the selective, allosteric inhibitor of PTP4A3, KVX-053. These findings provide the first evidence supporting a role for PTP4A3 in the development of SARS-CoV-2- mediated ALI. <b>Significance Statement</b> This study tested the hypothesis that targeting PTP4A3 would prevent COVID-19 associated ALI/ARDS. Intratracheal administration of SARS-CoV-2 Spike protein Subunit 1 to K18-hACE2 transgenic mice expressing human ACE2 elicited pulmonary and systemic inflammation, leaky alveoli, overexpression of cytokines and chemokines, structural lung injury and lung dysfunction; all these symptoms were ameliorated by the selective, allosteric inhibitor of PTP4A3, KVX-053. These findings suggest that this novel PTP4A3 inhibitor may be useful against COVID-19 and potentially other viral-induced ARDS.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacology and Experimental Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/jpet.124.002154","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The Acute Respiratory Distress Syndrome (ARDS), often preceded by acute lung injury (ALI), is characterized by the accumulation of inflammatory fluid in the lung alveoli, leaky alveolar epithelium and endothelium, and overexpression of pro-inflammatory cytokines. This progression from ALI to ARDS is a major contributor to the high mortality observed in COVID-19 patients. The Spike protein of SARS-CoV-2 binds to lung ACE2 and, in addition to facilitating viral cell entry, it plays an important role in the development of ALI and ARDS, especially in the later phases of COVID-19 as well as long COVID. Protein tyrosine phosphatase (PTP) 4A3 is a key mediator of ARDS pathology. This study tested the hypothesis that targeting PTP4A3 would prevent COVID-19 associated ALI. Intratracheal administration of SARS-CoV-2 Spike protein Subunit 1 to K18-hACE2 transgenic mice expressing human ACE2 elicited pulmonary and systemic inflammation, leaky alveoli, overexpression of cytokines, structural lung injury and lung dysfunction; all these symptoms were ameliorated by the selective, allosteric inhibitor of PTP4A3, KVX-053. These findings provide the first evidence supporting a role for PTP4A3 in the development of SARS-CoV-2- mediated ALI. Significance Statement This study tested the hypothesis that targeting PTP4A3 would prevent COVID-19 associated ALI/ARDS. Intratracheal administration of SARS-CoV-2 Spike protein Subunit 1 to K18-hACE2 transgenic mice expressing human ACE2 elicited pulmonary and systemic inflammation, leaky alveoli, overexpression of cytokines and chemokines, structural lung injury and lung dysfunction; all these symptoms were ameliorated by the selective, allosteric inhibitor of PTP4A3, KVX-053. These findings suggest that this novel PTP4A3 inhibitor may be useful against COVID-19 and potentially other viral-induced ARDS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蛋白酪氨酸磷酸酶 4A3 抑制剂 KVX-053 可改善 SARS-CoV-2 Spike 蛋白亚基 1 诱导的小鼠急性肺损伤。
急性呼吸窘迫综合征(ARDS)通常以急性肺损伤(ALI)为先兆,其特征是肺泡内炎性液体积聚、肺泡上皮和内皮渗漏以及促炎细胞因子过度表达。从 ALI 发展到 ARDS 是 COVID-19 患者死亡率高的主要原因。SARS-CoV-2 的穗状病毒蛋白与肺 ACE2 结合,除了促进病毒细胞进入肺部外,还在 ALI 和 ARDS 的发展过程中发挥重要作用,尤其是在 COVID-19 和长 COVID 的后期阶段。蛋白酪氨酸磷酸酶(PTP)4A3是ARDS病理学的关键介质。本研究测试了靶向 PTP4A3 可预防 COVID-19 相关 ALI 的假设。给表达人 ACE2 的 K18-hACE2 转基因小鼠气管内注射 SARS-CoV-2 Spike 蛋白亚单位 1 会引起肺部和全身炎症、肺泡渗漏、细胞因子过度表达、肺结构损伤和肺功能障碍;PTP4A3 的选择性异位抑制剂 KVX-053 可改善所有这些症状。这些发现首次证明了 PTP4A3 在 SARS-CoV-2 介导的 ALI 发病中的作用。意义声明 本研究测试了靶向 PTP4A3 可预防 COVID-19 相关 ALI/ARDS 的假设。给表达人 ACE2 的 K18-hACE2 转基因小鼠气管内注射 SARS-CoV-2 Spike 蛋白亚基 1 会引起肺部和全身炎症、肺泡渗漏、细胞因子和趋化因子过度表达、肺结构损伤和肺功能障碍;PTP4A3 的选择性异位抑制剂 KVX-053 可改善所有这些症状。这些研究结果表明,这种新型 PTP4A3 抑制剂可能对 COVID-19 以及其他可能由病毒诱发的 ARDS 有帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
115
审稿时长
1 months
期刊介绍: A leading research journal in the field of pharmacology published since 1909, JPET provides broad coverage of all aspects of the interactions of chemicals with biological systems, including autonomic, behavioral, cardiovascular, cellular, clinical, developmental, gastrointestinal, immuno-, neuro-, pulmonary, and renal pharmacology, as well as analgesics, drug abuse, metabolism and disposition, chemotherapy, and toxicology.
期刊最新文献
Preclinical Evaluation of MK-8189: A Novel Phosphodiesterase 10A Inhibitor for the Treatment of Schizophrenia. Molecular mechanisms underlying amyloid beta peptide mediated upregulation of vascular cell adhesion molecule-1 in Alzheimer's disease. Clinical Development of the GluN2B-selective NMDA Receptor Inhibitor NP10679 for the Treatment of Neurologic Deficit after Subarachnoid Hemorrhage. The Influence of the Estrous Cycle on Neuropeptide S Receptor-Mediated Behaviors. Dopamine D1-Like Receptor-Mediated Insurmountable Blockade of the Reinforcing Effects of Cocaine in Rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1