Reduce energy consumption in your laboratory - switch ultra-low temperature freezers from - 80 °C to -70 °C. A pilot study on short term storage of plasma samples for coagulation testing.
{"title":"Reduce energy consumption in your laboratory - switch ultra-low temperature freezers from - 80 °C to -70 °C. A pilot study on short term storage of plasma samples for coagulation testing.","authors":"Sumangala Bhattacharya, Peter H Nissen","doi":"10.1080/00365513.2024.2394981","DOIUrl":null,"url":null,"abstract":"<p><p>It is common practice in laboratories to store biological samples in ultra-low temperature (ULT) freezers. There is growing interest in raising the temperature of ULT freezers in order to save energy and reduce expenses, as energy conservation becomes increasingly important and sustainable laboratory practices gain popularity. In our laboratory, plasma samples are stored for three months for diagnostic purposes. We therefore took the opportunity to investigate the effect of two different storage temperatures (-70 °C vs -80 °C), on activated partial thromboplastin time (APTT), factor VIII (FVIII), international normalized ratio (INR) and factor VII (FVII) measurements on paired plasma samples collected from 26 individuals after three months of storage. Automated coagulation analysers CS-5100 and ACL TOP were used to perform the tests. We found no consistent difference between the two storage temperatures for any of the four coagulation parameters (all <i>p</i>-values > 0.05). We conclude that the temperature of ULT freezers used to store plasma samples for APTT, FVIII, INR, and FVII measurements can be safely increased from -80 to -70 °C without affecting the stability of the samples.</p>","PeriodicalId":21474,"journal":{"name":"Scandinavian Journal of Clinical & Laboratory Investigation","volume":" ","pages":"421-424"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Clinical & Laboratory Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00365513.2024.2394981","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
It is common practice in laboratories to store biological samples in ultra-low temperature (ULT) freezers. There is growing interest in raising the temperature of ULT freezers in order to save energy and reduce expenses, as energy conservation becomes increasingly important and sustainable laboratory practices gain popularity. In our laboratory, plasma samples are stored for three months for diagnostic purposes. We therefore took the opportunity to investigate the effect of two different storage temperatures (-70 °C vs -80 °C), on activated partial thromboplastin time (APTT), factor VIII (FVIII), international normalized ratio (INR) and factor VII (FVII) measurements on paired plasma samples collected from 26 individuals after three months of storage. Automated coagulation analysers CS-5100 and ACL TOP were used to perform the tests. We found no consistent difference between the two storage temperatures for any of the four coagulation parameters (all p-values > 0.05). We conclude that the temperature of ULT freezers used to store plasma samples for APTT, FVIII, INR, and FVII measurements can be safely increased from -80 to -70 °C without affecting the stability of the samples.
期刊介绍:
The Scandinavian Journal of Clinical and Laboratory Investigation is an international scientific journal covering clinically oriented biochemical and physiological research. Since the launch of the journal in 1949, it has been a forum for international laboratory medicine, closely related to, and edited by, The Scandinavian Society for Clinical Chemistry.
The journal contains peer-reviewed articles, editorials, invited reviews, and short technical notes, as well as several supplements each year. Supplements consist of monographs, and symposium and congress reports covering subjects within clinical chemistry and clinical physiology.