Helene M Sisti, Annika Beebe, Elias Gabrielsson, Mercedes Bishop
{"title":"Postmovement Beta Rebound in Real and Imagined Movement.","authors":"Helene M Sisti, Annika Beebe, Elias Gabrielsson, Mercedes Bishop","doi":"10.1123/mc.2023-0033","DOIUrl":null,"url":null,"abstract":"<p><p>Movement disorders, such as stroke and amyotrophic lateral sclerosis, result in loss of upper limb function and, hence, severe impairments of bimanual coordination. Although motor imagery is increasingly used to enhance neurorehabilitation, cognitive and neurophysiological parameters that inform effective strategies remain elusive. The aim of the present study is to elucidate the neural dynamics that underlie learning during real and imagined movement using both unimanual and bimanual coordination patterns. The post movement beta rebound (PMBR) has been implicated as a biomarker of motor control and therefore was the focus of this study. Healthy adults (n = 21) learned a visuomotor tracking task in a single session using either one or both hands while brainwaves were captured using electroencephalography. Postmovement beta rebound was evident in the sensorimotor cortex for both unimanual and bimanual conditions. Task-related power of the beta band demonstrated that actual unimanual movement requires greater contralateral activity compared with both actual bimanual movement and imagined movement of either condition. Notably, the PMBR was evident even in imagined movement, although to a lesser extent than real movement. Neurophysiological results support a functional role for beta band in movement. Results of these data may inform neurorehabilitation strategies for patients recovering from movement disorders of the upper limbs.</p>","PeriodicalId":49795,"journal":{"name":"Motor Control","volume":" ","pages":"1-16"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Motor Control","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1123/mc.2023-0033","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Movement disorders, such as stroke and amyotrophic lateral sclerosis, result in loss of upper limb function and, hence, severe impairments of bimanual coordination. Although motor imagery is increasingly used to enhance neurorehabilitation, cognitive and neurophysiological parameters that inform effective strategies remain elusive. The aim of the present study is to elucidate the neural dynamics that underlie learning during real and imagined movement using both unimanual and bimanual coordination patterns. The post movement beta rebound (PMBR) has been implicated as a biomarker of motor control and therefore was the focus of this study. Healthy adults (n = 21) learned a visuomotor tracking task in a single session using either one or both hands while brainwaves were captured using electroencephalography. Postmovement beta rebound was evident in the sensorimotor cortex for both unimanual and bimanual conditions. Task-related power of the beta band demonstrated that actual unimanual movement requires greater contralateral activity compared with both actual bimanual movement and imagined movement of either condition. Notably, the PMBR was evident even in imagined movement, although to a lesser extent than real movement. Neurophysiological results support a functional role for beta band in movement. Results of these data may inform neurorehabilitation strategies for patients recovering from movement disorders of the upper limbs.
期刊介绍:
Motor Control (MC), a peer-reviewed journal, provides a multidisciplinary examination of human movement across the lifespan. To keep you abreast of current developments in the field of motor control, it offers timely coverage of important topics, including issues related to motor disorders. This international journal publishes many types of research papers, from clinical experimental to modeling and theoretical studies. These papers come from such varied disciplines as biomechanics, kinesiology, neurophysiology, neuroscience, psychology, physical medicine, and rehabilitation.
Motor Control, the official journal of the International Society of Motor Control, is designed to provide a multidisciplinary forum for the exchange of scientific information on the control of human movement across the lifespan, including issues related to motor disorders.
Motor Control encourages submission of papers from a variety of disciplines including, but not limited to, biomechanics, kinesiology, neurophysiology, neuroscience, psychology, physical medicine, and rehabilitation. This peer-reviewed journal publishes a wide variety of types of research papers including clinical experimental, modeling, and theoretical studies. To be considered for publication, papers should clearly demonstrate a contribution to the understanding of control of movement.
In addition to publishing research papers, Motor Control publishes review articles, quick communications, commentaries, target articles, and book reviews. When warranted, an entire issue may be devoted to a specific topic within the area of motor control.