{"title":"S-wave log construction through semi-supervised regression clustering using machine learning: A case study of North Sea fields","authors":"","doi":"10.1016/j.jappgeo.2024.105476","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate prediction of S-wave velocity from well logs is essential for understanding subsurface geological formations and hydrocarbon reservoirs. Machine learning techniques, including clustering and regression, have emerged as effective methods for indirectly estimating S-wave logs and other rock properties. In this study, we employed clustering algorithms to identify similarities among well log datasets, encompassing depth, sonic, porosity, neutron, and apparent density, facilitating the discovery of correlations among various wells. These identified correlations served as a foundation for predicting S-wave values using a novel semi-supervised approach. Our approach combined clustering, specifically k-means clustering, with different types of regressors, including Least Squares Regression (LSR), Support Vector Regression (SVR), and Multi-Layer Perceptron (MLP). Our results demonstrate the superior performance of this integrated approach compared to traditional regression methods. We validated our methodology using various parametric and non-parametric regression techniques, showcasing its effectiveness not only on wells within the training region but also on wells outside the study area. We achieved a significant improvement in the <span><math><msup><mi>R</mi><mn>2</mn></msup></math></span> score metric, ranging from 2.22% to 6.51%, and a reduction in Mean Square Error (MSE) of at least 31% when compared to predictions made without clustering. This study underscores the potential of machine learning techniques for accurate prediction of S-wave velocity and other rock properties, thereby enhancing our comprehension of subsurface geology and hydrocarbon reservoirs.</p></div>","PeriodicalId":54882,"journal":{"name":"Journal of Applied Geophysics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926985124001927","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate prediction of S-wave velocity from well logs is essential for understanding subsurface geological formations and hydrocarbon reservoirs. Machine learning techniques, including clustering and regression, have emerged as effective methods for indirectly estimating S-wave logs and other rock properties. In this study, we employed clustering algorithms to identify similarities among well log datasets, encompassing depth, sonic, porosity, neutron, and apparent density, facilitating the discovery of correlations among various wells. These identified correlations served as a foundation for predicting S-wave values using a novel semi-supervised approach. Our approach combined clustering, specifically k-means clustering, with different types of regressors, including Least Squares Regression (LSR), Support Vector Regression (SVR), and Multi-Layer Perceptron (MLP). Our results demonstrate the superior performance of this integrated approach compared to traditional regression methods. We validated our methodology using various parametric and non-parametric regression techniques, showcasing its effectiveness not only on wells within the training region but also on wells outside the study area. We achieved a significant improvement in the score metric, ranging from 2.22% to 6.51%, and a reduction in Mean Square Error (MSE) of at least 31% when compared to predictions made without clustering. This study underscores the potential of machine learning techniques for accurate prediction of S-wave velocity and other rock properties, thereby enhancing our comprehension of subsurface geology and hydrocarbon reservoirs.
期刊介绍:
The Journal of Applied Geophysics with its key objective of responding to pertinent and timely needs, places particular emphasis on methodological developments and innovative applications of geophysical techniques for addressing environmental, engineering, and hydrological problems. Related topical research in exploration geophysics and in soil and rock physics is also covered by the Journal of Applied Geophysics.