{"title":"An improved attentive residue multi-dilated network for thermal noise removal in magnetic resonance images","authors":"Bowen Jiang, Tao Yue, Xuemei Hu","doi":"10.1016/j.imavis.2024.105213","DOIUrl":null,"url":null,"abstract":"<div><p>Magnetic resonance imaging (MRI) technology is crucial in the medical field, but the thermal noise in the reconstructed MR images may interfere with the clinical diagnosis. Removing the thermal noise in MR images mainly contains two challenges. First, thermal noise in an MR image obeys Rician distribution, where the statistical features are not consistent in different regions of the image. In this case, conventional denoising methods like spatial convolutional filtering will not be appropriate to deal with it. Second, details and edge information in the image may get damaged while smoothing the noise. This paper proposes a novel deep-learning model to denoise MR images. First, the model learns a binary mask to separate the background and signal regions of the noised image, making the noise left in the signal region obey a unified statistical distribution. Second, the model is designed as an attentive residual multi-dilated network (ARM-Net), composed of a multi-branch structure, and supplemented with a frequency-domain-optimizable discrete cosine transform module. In this way, the deep-learning model will be more effective in removing the noise while maintaining the details of the original image. Furthermore, we have also made improvements on the original ARM-Net baseline to establish a new model called ARM-Net v2, which is more efficient and effective. Experimental results illustrate that over the BraTS 2018 dataset, our method achieves the PSNR of 39.7087 and 32.6005 at noise levels of 5% and 20%, which realizes the state-of-the-art performance among existing MR image denoising methods.</p></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"150 ","pages":"Article 105213"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885624003184","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic resonance imaging (MRI) technology is crucial in the medical field, but the thermal noise in the reconstructed MR images may interfere with the clinical diagnosis. Removing the thermal noise in MR images mainly contains two challenges. First, thermal noise in an MR image obeys Rician distribution, where the statistical features are not consistent in different regions of the image. In this case, conventional denoising methods like spatial convolutional filtering will not be appropriate to deal with it. Second, details and edge information in the image may get damaged while smoothing the noise. This paper proposes a novel deep-learning model to denoise MR images. First, the model learns a binary mask to separate the background and signal regions of the noised image, making the noise left in the signal region obey a unified statistical distribution. Second, the model is designed as an attentive residual multi-dilated network (ARM-Net), composed of a multi-branch structure, and supplemented with a frequency-domain-optimizable discrete cosine transform module. In this way, the deep-learning model will be more effective in removing the noise while maintaining the details of the original image. Furthermore, we have also made improvements on the original ARM-Net baseline to establish a new model called ARM-Net v2, which is more efficient and effective. Experimental results illustrate that over the BraTS 2018 dataset, our method achieves the PSNR of 39.7087 and 32.6005 at noise levels of 5% and 20%, which realizes the state-of-the-art performance among existing MR image denoising methods.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.