IoT-enabled effective real-time water quality monitoring method for aquaculture

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES MethodsX Pub Date : 2024-08-13 DOI:10.1016/j.mex.2024.102906
{"title":"IoT-enabled effective real-time water quality monitoring method for aquaculture","authors":"","doi":"10.1016/j.mex.2024.102906","DOIUrl":null,"url":null,"abstract":"<div><p>Aquaculture is growing industry from the perspective of sustainable food fulfillment and county's economic development. Technology oriented aquafarming is the solution for effective water quality monitoring and high yield production. Internet of Things (IoT) integrated aquaculture can cater to such requirements. This research article introduces a comprehensive method aimed at seamlessly incorporate IoT sensors into aquafarming environments, utilizing Arduino boards and communication modules. The proposed method measures accurate water quality parameters, such as temperature, pH levels, and Dissolved Oxygen (DO), which are essential for maintaining optimal conditions for suitable aquaculture environment. This method enables the real-time collection of critical data points that are essential prevent fish diseases and mortality with low human intervention and maintenance cost. The key contributions of the methodology are mentioned below.</p><ul><li><span>•</span><span><p>Design and development of a compact and efficient Printed Circuit Board (PCB) to achieve accurate sensor data readings and reliable communication in an aqua environment.</p></span></li><li><span>•</span><span><p>Prevent fish disease and mortality rate through data-driven decision incorporating correlation of DO, pH, and temperature sensor data.</p></span></li><li><span>•</span><span><p>Conducted instrument calibration checks and cross-validated automated system data with manual observations through repeatability tests to ensure precise measurements of sensor parameters.</p></span></li></ul></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215016124003583/pdfft?md5=6baef658e02e303d8a2971d157b42766&pid=1-s2.0-S2215016124003583-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016124003583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Aquaculture is growing industry from the perspective of sustainable food fulfillment and county's economic development. Technology oriented aquafarming is the solution for effective water quality monitoring and high yield production. Internet of Things (IoT) integrated aquaculture can cater to such requirements. This research article introduces a comprehensive method aimed at seamlessly incorporate IoT sensors into aquafarming environments, utilizing Arduino boards and communication modules. The proposed method measures accurate water quality parameters, such as temperature, pH levels, and Dissolved Oxygen (DO), which are essential for maintaining optimal conditions for suitable aquaculture environment. This method enables the real-time collection of critical data points that are essential prevent fish diseases and mortality with low human intervention and maintenance cost. The key contributions of the methodology are mentioned below.

  • Design and development of a compact and efficient Printed Circuit Board (PCB) to achieve accurate sensor data readings and reliable communication in an aqua environment.

  • Prevent fish disease and mortality rate through data-driven decision incorporating correlation of DO, pH, and temperature sensor data.

  • Conducted instrument calibration checks and cross-validated automated system data with manual observations through repeatability tests to ensure precise measurements of sensor parameters.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物联网支持的有效水产养殖水质实时监测方法
从可持续粮食供应和县域经济发展的角度来看,水产养殖是一个不断发展的产业。以技术为导向的水产养殖是有效监测水质和实现高产的解决方案。物联网(IoT)集成水产养殖可以满足这些要求。本研究文章介绍了一种综合方法,旨在利用 Arduino 板和通信模块将物联网传感器无缝集成到水产养殖环境中。所提出的方法可测量精确的水质参数,如温度、pH 值和溶解氧(DO),这些参数对于维持适宜的水产养殖环境的最佳条件至关重要。该方法能够实时收集关键数据点,这些数据点对预防鱼类疾病和死亡至关重要,而且人工干预和维护成本低。该方法的主要贡献如下:-设计和开发了紧凑高效的印刷电路板(PCB),以实现水产环境中精确的传感器数据读数和可靠的通信。-通过数据驱动决策,结合溶解氧、pH 值和温度传感器数据的相关性,预防鱼类疾病和死亡率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊最新文献
ViT-HHO: Optimized vision transformer for diabetic retinopathy detection using Harris Hawk optimization Standardized lab-scale production of the recombinant fusion protein HUG for the nanoscale analysis of bilirubin The TOPSIS method: Figuring the landslide susceptibility using Excel and GIS A method to improve binary forecast skill verification Automated prediction of phosphorus concentration in soils using reflectance spectroscopy and machine learning algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1