{"title":"Robust baseline correction for Raman spectra by constrained Gaussian radial basis function fitting","authors":"Sungwon Park, Hongjoong Kim","doi":"10.1016/j.chemolab.2024.105205","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate baseline correction is a fundamental requirement for extracting meaningful spectral information and enabling precise quantitative analysis using Raman spectroscopy. Although numerous baseline correction techniques have been developed, they often require meticulous parameter adjustments and yield inconsistent results. To address these challenges, we have introduced a novel approach, namely constrained Gaussian radial basis function fitting (CGF). Our method involves solving a curve-fitting problem using Gaussian radial basis functions under specific constraints. To ensure stability and efficiency, we developed a linear programming algorithm for the proposed approach. We evaluated the performance of CGF using simulated Raman spectra and demonstrated its robustness across various scenarios, including changes in data length and noise levels. In contrast to standard methods, which frequently require complicated parameter adjustments and may exhibit varying errors, our approach provides a simple parameter search and consistently achieves low errors. We further assessed CGF using real Raman spectra, leading to enhanced accuracy in the quantitative analysis of the Raman spectra of chemical warfare agents. Our results emphasize the potential of CGF as a valuable tool for Raman spectroscopy data analysis, significantly advancing sophisticated analytical techniques.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"253 ","pages":"Article 105205"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016974392400145X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate baseline correction is a fundamental requirement for extracting meaningful spectral information and enabling precise quantitative analysis using Raman spectroscopy. Although numerous baseline correction techniques have been developed, they often require meticulous parameter adjustments and yield inconsistent results. To address these challenges, we have introduced a novel approach, namely constrained Gaussian radial basis function fitting (CGF). Our method involves solving a curve-fitting problem using Gaussian radial basis functions under specific constraints. To ensure stability and efficiency, we developed a linear programming algorithm for the proposed approach. We evaluated the performance of CGF using simulated Raman spectra and demonstrated its robustness across various scenarios, including changes in data length and noise levels. In contrast to standard methods, which frequently require complicated parameter adjustments and may exhibit varying errors, our approach provides a simple parameter search and consistently achieves low errors. We further assessed CGF using real Raman spectra, leading to enhanced accuracy in the quantitative analysis of the Raman spectra of chemical warfare agents. Our results emphasize the potential of CGF as a valuable tool for Raman spectroscopy data analysis, significantly advancing sophisticated analytical techniques.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.