Novel biomarkers associated with oxidative stress and immune infiltration in intervertebral disc degeneration based on bioinformatics approaches

IF 2.6 4区 生物学 Q2 BIOLOGY Computational Biology and Chemistry Pub Date : 2024-08-23 DOI:10.1016/j.compbiolchem.2024.108181
Min Xiang , Yue Lai , Jianlin Shen , Bo Wei , Huan Liu , Wenhua Huang
{"title":"Novel biomarkers associated with oxidative stress and immune infiltration in intervertebral disc degeneration based on bioinformatics approaches","authors":"Min Xiang ,&nbsp;Yue Lai ,&nbsp;Jianlin Shen ,&nbsp;Bo Wei ,&nbsp;Huan Liu ,&nbsp;Wenhua Huang","doi":"10.1016/j.compbiolchem.2024.108181","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The etiology of intervertebral disc degeneration (IVDD), a prevalent degenerative disease in the elderly, remains to be fully elucidated. The objective of this study was to identify immune infiltration and oxidative stress (OS) biomarkers in IVDD, aiming to provide further insights into the intricate pathogenesis of IVDD.</p></div><div><h3>Methods</h3><p>The Gene Expression microarrays were obtained from the Gene Expression Omnibus (GEO) database. We conducted enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms. Subsequently, the R language packages CIBERSORT, MCPcounter, and WGCNA were employed to compare immune infiltration levels between IVDD samples and control samples. A protein-protein interaction (PPI) network was constructed using the Search Tools for the Retrieval of Interacting Genes (STRING) database to identify significant gene clusters. To identify hub genes, we employed Cytoscape's Molecular Complex Detection (MCODE) plug-in. The mRNA levels of hub genes in the cell model were validated by qPCR, while Western blotting was used to validate their protein levels.</p></div><div><h3>Results</h3><p>The GSE70362 dataset from the GEO database identified a total of 1799 genes that were differentially expressed. Among these, 43 genes were found to be differentially expressed and also associated with OS. The differentially expressed genes associated with OS and the immune-related module genes identified through WGCNA were further intersected, resulting in the identification of 10 key genes that were differentially expressed and played crucial roles in both immune response and OS. Subsequently, we validated four diagnostic markers (PPIA, MAP3K5, PXN, and JAK2) using the GSE122429 external dataset. In a cellular model of OS in NP cells, we have identified the upregulation of PPIA and PXN genes, which could serve as novel markers for IVDD.</p></div><div><h3>Conclusion</h3><p>The study successfully identified and validated differentially expressed genes associated with oxidative stress and immune infiltration in IVDD samples compared to normal ones. Notably, the newly discovered biomarkers PPIA and PXN have not been previously reported in IVDD-related research.</p></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"112 ","pages":"Article 108181"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124001695","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

The etiology of intervertebral disc degeneration (IVDD), a prevalent degenerative disease in the elderly, remains to be fully elucidated. The objective of this study was to identify immune infiltration and oxidative stress (OS) biomarkers in IVDD, aiming to provide further insights into the intricate pathogenesis of IVDD.

Methods

The Gene Expression microarrays were obtained from the Gene Expression Omnibus (GEO) database. We conducted enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms. Subsequently, the R language packages CIBERSORT, MCPcounter, and WGCNA were employed to compare immune infiltration levels between IVDD samples and control samples. A protein-protein interaction (PPI) network was constructed using the Search Tools for the Retrieval of Interacting Genes (STRING) database to identify significant gene clusters. To identify hub genes, we employed Cytoscape's Molecular Complex Detection (MCODE) plug-in. The mRNA levels of hub genes in the cell model were validated by qPCR, while Western blotting was used to validate their protein levels.

Results

The GSE70362 dataset from the GEO database identified a total of 1799 genes that were differentially expressed. Among these, 43 genes were found to be differentially expressed and also associated with OS. The differentially expressed genes associated with OS and the immune-related module genes identified through WGCNA were further intersected, resulting in the identification of 10 key genes that were differentially expressed and played crucial roles in both immune response and OS. Subsequently, we validated four diagnostic markers (PPIA, MAP3K5, PXN, and JAK2) using the GSE122429 external dataset. In a cellular model of OS in NP cells, we have identified the upregulation of PPIA and PXN genes, which could serve as novel markers for IVDD.

Conclusion

The study successfully identified and validated differentially expressed genes associated with oxidative stress and immune infiltration in IVDD samples compared to normal ones. Notably, the newly discovered biomarkers PPIA and PXN have not been previously reported in IVDD-related research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于生物信息学方法的椎间盘退变中与氧化应激和免疫浸润相关的新型生物标记物
背景椎间盘退行性变(IVDD)是一种在老年人中普遍存在的退行性疾病,其病因仍未完全阐明。本研究的目的是鉴定 IVDD 中的免疫浸润和氧化应激(OS)生物标志物,旨在进一步揭示 IVDD 错综复杂的发病机制。我们对基因本体(GO)和京都基因组百科全书(KEGG)术语进行了富集分析。随后,我们使用 R 语言包 CIBERSORT、MCPcounter 和 WGCNA 比较了 IVDD 样本和对照样本之间的免疫浸润水平。利用检索相互作用基因的搜索工具(STRING)数据库构建了蛋白质-蛋白质相互作用(PPI)网络,以确定重要的基因簇。为了识别中心基因,我们使用了Cytoscape的分子复合体检测(MCODE)插件。结果GEO数据库中的GSE70362数据集共发现了1799个差异表达的基因。在这些基因中,有43个基因的差异表达与OS相关。我们将与OS相关的差异表达基因和通过WGCNA鉴定出的免疫相关模块基因进一步交叉,最终确定了10个差异表达的关键基因,这些基因在免疫反应和OS中都起着至关重要的作用。随后,我们利用 GSE122429 外部数据集验证了四个诊断标记(PPIA、MAP3K5、PXN 和 JAK2)。结论 该研究成功鉴定并验证了与正常样本相比,IVDD样本中与氧化应激和免疫浸润相关的差异表达基因。值得注意的是,新发现的生物标志物 PPIA 和 PXN 以前从未在 IVDD 相关研究中报道过。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Biology and Chemistry
Computational Biology and Chemistry 生物-计算机:跨学科应用
CiteScore
6.10
自引率
3.20%
发文量
142
审稿时长
24 days
期刊介绍: Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered. Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered. Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.
期刊最新文献
scSFCL:Deep clustering of scRNA-seq data with subspace feature confidence learning A structure-based approach to discover a potential isomerase Pin1 inhibitor for cancer therapy using computational simulation and biological studies In-silico screening to identify phytochemical inhibitor for hP2X7: A crucial inflammatory cell death mediator in Parkinson’s disease Pharmacoinformatics-based prediction of Checkpoint kinase-1 inhibitors from Momordica charantia Linn. for cancer A multi-perspective deep learning framework for enhancer characterization and identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1