Tongkang Zhang , Datong Li , Chun Li , Jinliang Ding
{"title":"EHOPN: A novel enhanced high-order pooling-based network for industrial fault detection","authors":"Tongkang Zhang , Datong Li , Chun Li , Jinliang Ding","doi":"10.1016/j.jprocont.2024.103296","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, deep learning algorithms have been successfully applied to industrial fault detection because they are better at automatically extracting complex features and processing high-dimensional data than traditional methods. However, most existing deep learning-based fault detection methods only concentrate on extracting features from industrial process data without considering the crucial long-term temporal features and higher-order statistical information. To address this challenge, we proposed a novel enhanced higher-order pooling-based network (EHOPN) for industrial fault detection. First, the data pre-processing of the network is presented to capture the dynamic features of time-series process data and unify the high-dimensional data scale. Second, the EHOPN utilizes channel and temporal second-order pooling techniques to gather temporal and channel statistics information, facilitating the backbone network’s ability to capture complex inter-dependencies and long-term dynamics. Additionally, the high-order feature aggregation module is presented to aggregate global and local features, enhancing the network’s generalization ability. The proposed industrial fault detection approach is evaluated on the Tennessee Eastman benchmark and a real-world heavy-plate production process. Experimental results show that the proposed method is significantly better than comparison models in four evaluation metrics: accuracy, precision, recall, and F1-score, further proving the effectiveness of EHOPN.</p></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"142 ","pages":"Article 103296"},"PeriodicalIF":3.3000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152424001367","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, deep learning algorithms have been successfully applied to industrial fault detection because they are better at automatically extracting complex features and processing high-dimensional data than traditional methods. However, most existing deep learning-based fault detection methods only concentrate on extracting features from industrial process data without considering the crucial long-term temporal features and higher-order statistical information. To address this challenge, we proposed a novel enhanced higher-order pooling-based network (EHOPN) for industrial fault detection. First, the data pre-processing of the network is presented to capture the dynamic features of time-series process data and unify the high-dimensional data scale. Second, the EHOPN utilizes channel and temporal second-order pooling techniques to gather temporal and channel statistics information, facilitating the backbone network’s ability to capture complex inter-dependencies and long-term dynamics. Additionally, the high-order feature aggregation module is presented to aggregate global and local features, enhancing the network’s generalization ability. The proposed industrial fault detection approach is evaluated on the Tennessee Eastman benchmark and a real-world heavy-plate production process. Experimental results show that the proposed method is significantly better than comparison models in four evaluation metrics: accuracy, precision, recall, and F1-score, further proving the effectiveness of EHOPN.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.