Bing Lu , Yongqiang Zhou , Zheng Ma , Zhenfan Wang
{"title":"CircRNA ATF6 suppresses bladder cancer cell proliferation and migration via miR-146a-5p/FLNA axis","authors":"Bing Lu , Yongqiang Zhou , Zheng Ma , Zhenfan Wang","doi":"10.1016/j.mrfmmm.2024.111876","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Bladder cancer (BCa) is the most common malignancy with increasing morbidity and mortality. Circular RNA (circRNA) ATF6 level was downregulated in BCa after GSE92675 CircRNA microarray dataset was analyzed using GEO2R. However, its function and mechanism in BCa remain largely unknown.</p></div><div><h3>Methods</h3><p>GEO2R and reverse transcription quantitative polymerase chain reaction (RT-qPCR) were used to measure levels of circRNA ATF6, microRNA-146a-5p (miR-146a-5p), and filamin A (FLNA). CircRNA ATF6 stability was assessed by actinomycin D and RNase R assays, while circRNA ATF6 cellular localization was examined by FISH experiments in T24 cells. Cell counting kit-8 (CCK-8), colony formation, wound-healing, and transwell assays were used to study circRNA ATF6’s function in growth, motility, and invasion. By examining luciferase, starBase, RNA pull-down, and RNA immunoprecipitation (RIP) experiments, we anticipated and confirmed miR-146a-5p interactions with circRNA ATF6, as well as miR-146a-5p interactions with FLNA. On tumor-bearing mice, <em>in vivo</em> experiments were conducted.</p></div><div><h3>Results</h3><p>MiR-146a-5p expression in Bca was elevated, while circRNA ATF6 and FLNA were downregulated. CircRNA ATF6 showed better stability in BCa cells, with its expression primarily in the cytoplasm. Upregulating circRNA ATF6 lowered BCa cell viability, colony numbers, and invasion numbers, but broadened their migratory pattern. MiR-146a-5p was directly sponged up by circRNA ATF6, which also detrimentally affected miR-146a-5p levels in BCa. MiR-146a-5p reduced BCa FLNA expression by targeting FLNA. FLNA silencing abolished circRNA ATF6’s mitigating function in BCa cell proliferation, motility, and invasion. <em>In vivo</em>, overexpression of circRNA ATF6 significantly reduced tumor volume and weight.</p></div><div><h3>Conclusion</h3><p>CircRNA ATF6 suppresses BCa cell growth, migration and invasion through the miR-146a-5p/FLNA axis.</p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"829 ","pages":"Article 111876"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0027510724000265","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Bladder cancer (BCa) is the most common malignancy with increasing morbidity and mortality. Circular RNA (circRNA) ATF6 level was downregulated in BCa after GSE92675 CircRNA microarray dataset was analyzed using GEO2R. However, its function and mechanism in BCa remain largely unknown.
Methods
GEO2R and reverse transcription quantitative polymerase chain reaction (RT-qPCR) were used to measure levels of circRNA ATF6, microRNA-146a-5p (miR-146a-5p), and filamin A (FLNA). CircRNA ATF6 stability was assessed by actinomycin D and RNase R assays, while circRNA ATF6 cellular localization was examined by FISH experiments in T24 cells. Cell counting kit-8 (CCK-8), colony formation, wound-healing, and transwell assays were used to study circRNA ATF6’s function in growth, motility, and invasion. By examining luciferase, starBase, RNA pull-down, and RNA immunoprecipitation (RIP) experiments, we anticipated and confirmed miR-146a-5p interactions with circRNA ATF6, as well as miR-146a-5p interactions with FLNA. On tumor-bearing mice, in vivo experiments were conducted.
Results
MiR-146a-5p expression in Bca was elevated, while circRNA ATF6 and FLNA were downregulated. CircRNA ATF6 showed better stability in BCa cells, with its expression primarily in the cytoplasm. Upregulating circRNA ATF6 lowered BCa cell viability, colony numbers, and invasion numbers, but broadened their migratory pattern. MiR-146a-5p was directly sponged up by circRNA ATF6, which also detrimentally affected miR-146a-5p levels in BCa. MiR-146a-5p reduced BCa FLNA expression by targeting FLNA. FLNA silencing abolished circRNA ATF6’s mitigating function in BCa cell proliferation, motility, and invasion. In vivo, overexpression of circRNA ATF6 significantly reduced tumor volume and weight.
Conclusion
CircRNA ATF6 suppresses BCa cell growth, migration and invasion through the miR-146a-5p/FLNA axis.
期刊介绍:
Mutation Research (MR) provides a platform for publishing all aspects of DNA mutations and epimutations, from basic evolutionary aspects to translational applications in genetic and epigenetic diagnostics and therapy. Mutations are defined as all possible alterations in DNA sequence and sequence organization, from point mutations to genome structural variation, chromosomal aberrations and aneuploidy. Epimutations are defined as alterations in the epigenome, i.e., changes in DNA methylation, histone modification and small regulatory RNAs.
MR publishes articles in the following areas:
Of special interest are basic mechanisms through which DNA damage and mutations impact development and differentiation, stem cell biology and cell fate in general, including various forms of cell death and cellular senescence.
The study of genome instability in human molecular epidemiology and in relation to complex phenotypes, such as human disease, is considered a growing area of importance.
Mechanisms of (epi)mutation induction, for example, during DNA repair, replication or recombination; novel methods of (epi)mutation detection, with a focus on ultra-high-throughput sequencing.
Landscape of somatic mutations and epimutations in cancer and aging.
Role of de novo mutations in human disease and aging; mutations in population genomics.
Interactions between mutations and epimutations.
The role of epimutations in chromatin structure and function.
Mitochondrial DNA mutations and their consequences in terms of human disease and aging.
Novel ways to generate mutations and epimutations in cell lines and animal models.