{"title":"Incorporating interface effects into multi-material topology optimization by improving interface configuration: An energy-based approach","authors":"","doi":"10.1016/j.cma.2024.117325","DOIUrl":null,"url":null,"abstract":"<div><p>Interfaces between structural multi-materials generally exhibit asymmetric resistance to tension and compression. Given this interface behavior, this work suggests an energy-based approach to improve the interface configuration for multi-material topology optimization. Based on the strain spectral decomposition, we decompose the structural elastic strain energy into tensile and compressive portions. In the density-based topology optimization framework, we use the gradient-based method to track the interface between multiple materials. Then, we construct an interface-associated scalar field to penalize the tensile portion of the strain energy, causing a pseudo-degradation of the strain energy at the interface region. Finally, within limited material usages and by minimizing the linear weighted structural strain energy and its pseudo-degradation, multi-material topology optimization with improved interface configuration is achieved. Several 2D and 3D numerical examples are investigated, by which the effectiveness and robustness of the suggested approach are fairly validated.</p></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524005802","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Interfaces between structural multi-materials generally exhibit asymmetric resistance to tension and compression. Given this interface behavior, this work suggests an energy-based approach to improve the interface configuration for multi-material topology optimization. Based on the strain spectral decomposition, we decompose the structural elastic strain energy into tensile and compressive portions. In the density-based topology optimization framework, we use the gradient-based method to track the interface between multiple materials. Then, we construct an interface-associated scalar field to penalize the tensile portion of the strain energy, causing a pseudo-degradation of the strain energy at the interface region. Finally, within limited material usages and by minimizing the linear weighted structural strain energy and its pseudo-degradation, multi-material topology optimization with improved interface configuration is achieved. Several 2D and 3D numerical examples are investigated, by which the effectiveness and robustness of the suggested approach are fairly validated.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.