Jingfei He, Zezhong Yang, Xunan Zheng, Xiaoyue Zhang, Ao Li
{"title":"Low-rank tensor completion based on tensor train rank with partially overlapped sub-blocks and total variation","authors":"Jingfei He, Zezhong Yang, Xunan Zheng, Xiaoyue Zhang, Ao Li","doi":"10.1016/j.image.2024.117193","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, the low-rank tensor completion method based on tensor train (TT) rank has achieved promising performance. Ket augmentation (KA) is commonly used in TT rank-based methods to improve the performance by converting low-dimensional tensors to higher-dimensional tensors. However, block artifacts are caused since KA also destroys the original structure and image continuity of original low-dimensional tensors. To tackle this issue, a low-rank tensor completion method based on TT rank with tensor augmentation by partially overlapped sub-blocks (TAPOS) and total variation (TV) is proposed in this paper. The proposed TAPOS preserves the image continuity of the original tensor and enhances the low-rankness of the generated higher-dimensional tensors, and a weighted de-augmentation method is used to assign different weights to the elements of sub-blocks and further reduce the block artifacts. To further alleviate the block artifacts and improve reconstruction accuracy, TV is introduced in the TAPOS-based model to add the piecewise smooth prior. The parallel matrix decomposition method is introduced to estimate the TT rank to reduce the computational cost. Numerical experiments show that the proposed method outperforms the existing state-of-the-art methods.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"129 ","pages":"Article 117193"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524000948","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, the low-rank tensor completion method based on tensor train (TT) rank has achieved promising performance. Ket augmentation (KA) is commonly used in TT rank-based methods to improve the performance by converting low-dimensional tensors to higher-dimensional tensors. However, block artifacts are caused since KA also destroys the original structure and image continuity of original low-dimensional tensors. To tackle this issue, a low-rank tensor completion method based on TT rank with tensor augmentation by partially overlapped sub-blocks (TAPOS) and total variation (TV) is proposed in this paper. The proposed TAPOS preserves the image continuity of the original tensor and enhances the low-rankness of the generated higher-dimensional tensors, and a weighted de-augmentation method is used to assign different weights to the elements of sub-blocks and further reduce the block artifacts. To further alleviate the block artifacts and improve reconstruction accuracy, TV is introduced in the TAPOS-based model to add the piecewise smooth prior. The parallel matrix decomposition method is introduced to estimate the TT rank to reduce the computational cost. Numerical experiments show that the proposed method outperforms the existing state-of-the-art methods.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.