Generation of human induced pluripotent stem cell lines from patients with a RYR2 gene variant c.14201A>G (p.Y4734C): Implications for idiopathic ventricular fibrillation and catecholaminergic polymorphic ventricular tachycardia
Canan Celiker , Stefan Zelenak , Samuel Lietava , Jiri Pachernik , Marketa Bebarova , Jana Zidkova , Tomas Novotny , Tomas Barta
{"title":"Generation of human induced pluripotent stem cell lines from patients with a RYR2 gene variant c.14201A>G (p.Y4734C): Implications for idiopathic ventricular fibrillation and catecholaminergic polymorphic ventricular tachycardia","authors":"Canan Celiker , Stefan Zelenak , Samuel Lietava , Jiri Pachernik , Marketa Bebarova , Jana Zidkova , Tomas Novotny , Tomas Barta","doi":"10.1016/j.scr.2024.103541","DOIUrl":null,"url":null,"abstract":"<div><p>Human induced pluripotent stem cell (iPSC) lines were generated from peripheral blood mononuclear cells (PBMCs) isolated from two related patients diagnosed with either idiopathic ventricular fibrillation or catecholaminergic polymorphic ventricular tachycardia, carrying an unknown variant in the RYR2 gene, c.14201A>G (p.Y4734C) and one healthy related individual. Reprogramming was done using a commercially available Epi5 Reprogramming Kit. The pluripotency of the iPSC lines was verified by the expression of pluripotency markers and by their capacity to differentiate into all three embryonic germ layers in vitro. These iPSC lines are available for functional analysis and in vitro studies of RYR2 channelopathy.</p></div>","PeriodicalId":21843,"journal":{"name":"Stem cell research","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1873506124002393/pdfft?md5=71c2c935bc4ba335e69b438a8657b6c4&pid=1-s2.0-S1873506124002393-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1873506124002393","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Human induced pluripotent stem cell (iPSC) lines were generated from peripheral blood mononuclear cells (PBMCs) isolated from two related patients diagnosed with either idiopathic ventricular fibrillation or catecholaminergic polymorphic ventricular tachycardia, carrying an unknown variant in the RYR2 gene, c.14201A>G (p.Y4734C) and one healthy related individual. Reprogramming was done using a commercially available Epi5 Reprogramming Kit. The pluripotency of the iPSC lines was verified by the expression of pluripotency markers and by their capacity to differentiate into all three embryonic germ layers in vitro. These iPSC lines are available for functional analysis and in vitro studies of RYR2 channelopathy.
期刊介绍:
Stem Cell Research is dedicated to publishing high-quality manuscripts focusing on the biology and applications of stem cell research. Submissions to Stem Cell Research, may cover all aspects of stem cells, including embryonic stem cells, tissue-specific stem cells, cancer stem cells, developmental studies, stem cell genomes, and translational research. Stem Cell Research publishes 6 issues a year.