{"title":"Anti-SARS-CoV-2 gapmer antisense oligonucleotides targeting the main protease region of viral RNA","authors":"Masako Yamasaki , Wakana Saso , Takuya Yamamoto , Masayoshi Sato , Hiroko Takagi , Tetsuya Hasegawa , Yuji Kozakura , Hiroyuki Yokoi , Hirofumi Ohashi , Kana Tsuchimoto , Rina Hashimoto , Shuetsu Fukushi , Akihiko Uda , Masamichi Muramatsu , Kazuo Takayama , Ken Maeda , Yoshimasa Takahashi , Tsuyoshi Nagase , Koichi Watashi","doi":"10.1016/j.antiviral.2024.105992","DOIUrl":null,"url":null,"abstract":"<div><p>Given the worldwide risk for the outbreak of emerging/re-emerging respiratory viruses, establishment of new antiviral strategies is greatly demanded. In this study, we present a scheme to identify gapmer antisense oligonucleotides (ASOs) targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA that efficiently inhibit viral replication. We synthesized approximately 300 gapmer ASOs designed to target various SARS-CoV-2 RNA regions and evaluated their activity in cell-based assays. Through a multistep screening in cell culture systems, we identified that ASO#41, targeting the coding region for viral main protease, reduced SARS-CoV-2 RNA levels in infected cells and inhibited virus-induced cytopathic effects. Antiviral effect of ASO#41 was also observed in iPS cell-derived human lung organoids. ASO#41 depleted intracellular viral RNAs during genome replication in an endogenous RNaseH-dependent manner. ASO#41 showed a wide range of antiviral activity against SARS-CoV-2 variants of concern including Alpha, Delta, and Omicron. Intranasal administration to mice exhibited intracellular accumulation of ASO#41 in the lung and significantly reduced the viral infectious titer, with milder body weight loss due to SARS-CoV-2 infection. Further chemical modification with phosphoryl guanidine-containing backbone linkages provided an elevation of anti-SARS-CoV-2 activity, with 23.4 nM of 50% antiviral inhibitory concentration, one of the strongest anti-SARS-CoV-2 ASOs reported so far. Our study presents an approach to identify active ASOs against SARS-CoV-2, which is potentially useful for establishing an antiviral strategy by targeting genome RNA of respiratory viruses.</p></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166354224002018","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Given the worldwide risk for the outbreak of emerging/re-emerging respiratory viruses, establishment of new antiviral strategies is greatly demanded. In this study, we present a scheme to identify gapmer antisense oligonucleotides (ASOs) targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA that efficiently inhibit viral replication. We synthesized approximately 300 gapmer ASOs designed to target various SARS-CoV-2 RNA regions and evaluated their activity in cell-based assays. Through a multistep screening in cell culture systems, we identified that ASO#41, targeting the coding region for viral main protease, reduced SARS-CoV-2 RNA levels in infected cells and inhibited virus-induced cytopathic effects. Antiviral effect of ASO#41 was also observed in iPS cell-derived human lung organoids. ASO#41 depleted intracellular viral RNAs during genome replication in an endogenous RNaseH-dependent manner. ASO#41 showed a wide range of antiviral activity against SARS-CoV-2 variants of concern including Alpha, Delta, and Omicron. Intranasal administration to mice exhibited intracellular accumulation of ASO#41 in the lung and significantly reduced the viral infectious titer, with milder body weight loss due to SARS-CoV-2 infection. Further chemical modification with phosphoryl guanidine-containing backbone linkages provided an elevation of anti-SARS-CoV-2 activity, with 23.4 nM of 50% antiviral inhibitory concentration, one of the strongest anti-SARS-CoV-2 ASOs reported so far. Our study presents an approach to identify active ASOs against SARS-CoV-2, which is potentially useful for establishing an antiviral strategy by targeting genome RNA of respiratory viruses.
期刊介绍:
Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.