Pureum Lee , Jihee Kim , Hanseul Oh , Chang-Ung Kim , Ahn Young Jeong , Moo-Seung Lee , Min Seong Jang , Jung Joo Hong , Jung-Eun Park , Doo-Jin Kim
{"title":"Coronavirus nucleocapsid-based vaccine provides partial protection against hetero-species coronavirus in murine models","authors":"Pureum Lee , Jihee Kim , Hanseul Oh , Chang-Ung Kim , Ahn Young Jeong , Moo-Seung Lee , Min Seong Jang , Jung Joo Hong , Jung-Eun Park , Doo-Jin Kim","doi":"10.1016/j.antiviral.2024.105991","DOIUrl":null,"url":null,"abstract":"<div><p>Most coronavirus vaccines focus on the spike (S) antigen, but the frequent mutations in S raise concerns about the vaccine efficacy against new variants. Although additional antigens with conserved sequences are have been tested, the extent to which these vaccines can provide immunity against different coronavirus species remains unclear. In this study, we assessed the potential of nucleocapsid (N) as a coronavirus vaccine antigen. Immunization with MERS-CoV N induced robust immune responses, providing significant protection against MERS-CoV. Notably, MERS-CoV N elicited cross-reactive T cell responses to SARS-CoV-2 N and significantly reduced lung inflammation following a SARS-CoV-2 challenge in the transient hACE2 mouse model. However, in K18-hACE transgenic mice, the vaccine showed limited protection. Collectively, our findings suggest that coronavirus N can be an effective vaccine antigen against homologous viruses, but its efficacy may vary across different coronaviruses, highlighting the need for further research on pan-coronavirus vaccines using conserved antigens.</p></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"231 ","pages":"Article 105991"},"PeriodicalIF":4.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166354224002006","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Most coronavirus vaccines focus on the spike (S) antigen, but the frequent mutations in S raise concerns about the vaccine efficacy against new variants. Although additional antigens with conserved sequences are have been tested, the extent to which these vaccines can provide immunity against different coronavirus species remains unclear. In this study, we assessed the potential of nucleocapsid (N) as a coronavirus vaccine antigen. Immunization with MERS-CoV N induced robust immune responses, providing significant protection against MERS-CoV. Notably, MERS-CoV N elicited cross-reactive T cell responses to SARS-CoV-2 N and significantly reduced lung inflammation following a SARS-CoV-2 challenge in the transient hACE2 mouse model. However, in K18-hACE transgenic mice, the vaccine showed limited protection. Collectively, our findings suggest that coronavirus N can be an effective vaccine antigen against homologous viruses, but its efficacy may vary across different coronaviruses, highlighting the need for further research on pan-coronavirus vaccines using conserved antigens.
大多数冠状病毒疫苗都以尖峰(S)抗原为重点,但 S 抗原的频繁变异令人担忧疫苗对新变种的免疫效果。尽管已经对其他具有保守序列的抗原进行了测试,但这些疫苗能在多大程度上提供针对不同冠状病毒物种的免疫力仍不清楚。在本研究中,我们评估了核壳(N)作为冠状病毒疫苗抗原的潜力。用MERS-CoV N免疫可诱导强有力的免疫反应,提供针对MERS-CoV的显著保护。值得注意的是,在瞬时 hACE2 小鼠模型中,MERS-CoV N 可引起与 SARS-CoV-2 N 交叉反应的 T 细胞应答,并显著减轻 SARS-CoV-2 挑战后的肺部炎症。然而,在 K18-hACE 转基因小鼠中,疫苗显示出有限的保护作用。总之,我们的研究结果表明,冠状病毒 N 可以作为一种有效的疫苗抗原来对抗同源病毒,但其功效在不同的冠状病毒中可能会有所不同,这凸显了利用保守抗原进一步研究泛冠状病毒疫苗的必要性。
期刊介绍:
Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.