{"title":"Hepatic and metabolic outcomes induced by sub-chronic exposure to polystyrene microplastics in mice","authors":"Sheng-Han Lee, Ting-An Lin, Yuan-Horng Yan, Chu-Chun Chien, Tsun-Jen Cheng","doi":"10.1007/s00204-024-03847-7","DOIUrl":null,"url":null,"abstract":"<div><p>Microplastics (MPs) have attracted significant attention due to their global distribution in living environments. Although some studies have reported MP-induced hepatotoxicity in mouse models, a systematic approach to MP-mediated liver toxicity was still lacking. Therefore, we used a mouse model to study the sub-chronic effects of MP exposure on the liver. Female C57BL/6 mice, aged 6 weeks, received an oral administration of 0.3 mg of Nile Red-labeled polystyrene (PS) microplastics, with particle sizes of 0.5 µm (submicron) and 5 µm (micron), via gavage, while control mice received vehicle only. Each mouse was exposed to MPs twice a week for 12 weeks. After sacrifice, the levels of MP accumulation, oxidative stress, inflammation, and pathological changes were measured in the mouse liver, and blood samples were collected for serum biochemistry analysis. Our results demonstrated that 0.5 µm PS-MPs were accumulated in mouse livers post-MP exposure, but not in the 5 µm MP exposure group. Simultaneously, increased levels of glucose, triglyceride, alanine transaminase (ALT), aspartate transaminase (AST), superoxide dismutase, 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), interleukin-6, and lipid droplets were found in the 0.5 µm MP exposure group, while the fewer responses, including elevated liver weight index, glucose, high-density lipoprotein, AST, and decreased HNE-MA were observed in 5 µm MP exposure group. These results indicate that sub-chronic exposure to submicron MPs causes MP deposition in mouse livers, which further induces oxidative stress, increases inflammatory cytokines and perturbs glucose and lipid homeostasis, which might trigger more severe metabolic dysfunction or non-alcoholic steatohepatitis-like hepatotoxicity.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":"98 11","pages":"3811 - 3823"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Toxicology","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00204-024-03847-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics (MPs) have attracted significant attention due to their global distribution in living environments. Although some studies have reported MP-induced hepatotoxicity in mouse models, a systematic approach to MP-mediated liver toxicity was still lacking. Therefore, we used a mouse model to study the sub-chronic effects of MP exposure on the liver. Female C57BL/6 mice, aged 6 weeks, received an oral administration of 0.3 mg of Nile Red-labeled polystyrene (PS) microplastics, with particle sizes of 0.5 µm (submicron) and 5 µm (micron), via gavage, while control mice received vehicle only. Each mouse was exposed to MPs twice a week for 12 weeks. After sacrifice, the levels of MP accumulation, oxidative stress, inflammation, and pathological changes were measured in the mouse liver, and blood samples were collected for serum biochemistry analysis. Our results demonstrated that 0.5 µm PS-MPs were accumulated in mouse livers post-MP exposure, but not in the 5 µm MP exposure group. Simultaneously, increased levels of glucose, triglyceride, alanine transaminase (ALT), aspartate transaminase (AST), superoxide dismutase, 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), interleukin-6, and lipid droplets were found in the 0.5 µm MP exposure group, while the fewer responses, including elevated liver weight index, glucose, high-density lipoprotein, AST, and decreased HNE-MA were observed in 5 µm MP exposure group. These results indicate that sub-chronic exposure to submicron MPs causes MP deposition in mouse livers, which further induces oxidative stress, increases inflammatory cytokines and perturbs glucose and lipid homeostasis, which might trigger more severe metabolic dysfunction or non-alcoholic steatohepatitis-like hepatotoxicity.
期刊介绍:
Archives of Toxicology provides up-to-date information on the latest advances in toxicology. The journal places particular emphasis on studies relating to defined effects of chemicals and mechanisms of toxicity, including toxic activities at the molecular level, in humans and experimental animals. Coverage includes new insights into analysis and toxicokinetics and into forensic toxicology. Review articles of general interest to toxicologists are an additional important feature of the journal.