Julia Maria Frare , Patrícia Rodrigues , Náthaly Andrighetto Ruviaro , Gabriela Trevisan
{"title":"Chronic post-ischemic pain (CPIP) a model of complex regional pain syndrome (CRPS-I): Role of oxidative stress and inflammation","authors":"Julia Maria Frare , Patrícia Rodrigues , Náthaly Andrighetto Ruviaro , Gabriela Trevisan","doi":"10.1016/j.bcp.2024.116506","DOIUrl":null,"url":null,"abstract":"<div><p>Complex regional pain syndrome (CRPS) presents as a persistent and distressing pain condition often stemming from limb trauma or ischemia, manifesting as either CRPS-I (without initial nerve injury) or CRPS-II (accompanied by nerve injury). Despite its prevalence and significant impact on functionality and emotional well-being, standard treatments for CRPS remain elusive. The multifaceted nature of CRPS complicates the identification of its underlying mechanisms. In efforts to elucidate these mechanisms, researchers have turned to animal models such as chronic post-ischemic pain (CPIP), which mirrors the symptoms of CRPS-I. Various mechanisms have been proposed to underlie the acute and chronic pain experienced in CRPS-I, including oxidative stress and inflammation. Traditional treatment approaches often involve antidepressants, non-steroidal anti-inflammatory drugs (NSAIDs), and opioids. However, these methods frequently fall short of providing adequate relief. Accordingly, there is a growing interest in exploring alternative treatments, such as antioxidant supplementation, anti-inflammatory agents, and non-pharmacological interventions. Future research directions should focus on optimizing treatment strategies and addressing remaining gaps in knowledge to improve patient outcomes. This review aims to delve into the pathophysiological mechanisms implicated in the CPIP model, specifically focusing on oxidative stress and inflammation, with the ultimate goal of proposing innovative therapeutic strategies for alleviating the symptoms of CRPS-I.</p></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"229 ","pages":"Article 116506"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295224004891","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Complex regional pain syndrome (CRPS) presents as a persistent and distressing pain condition often stemming from limb trauma or ischemia, manifesting as either CRPS-I (without initial nerve injury) or CRPS-II (accompanied by nerve injury). Despite its prevalence and significant impact on functionality and emotional well-being, standard treatments for CRPS remain elusive. The multifaceted nature of CRPS complicates the identification of its underlying mechanisms. In efforts to elucidate these mechanisms, researchers have turned to animal models such as chronic post-ischemic pain (CPIP), which mirrors the symptoms of CRPS-I. Various mechanisms have been proposed to underlie the acute and chronic pain experienced in CRPS-I, including oxidative stress and inflammation. Traditional treatment approaches often involve antidepressants, non-steroidal anti-inflammatory drugs (NSAIDs), and opioids. However, these methods frequently fall short of providing adequate relief. Accordingly, there is a growing interest in exploring alternative treatments, such as antioxidant supplementation, anti-inflammatory agents, and non-pharmacological interventions. Future research directions should focus on optimizing treatment strategies and addressing remaining gaps in knowledge to improve patient outcomes. This review aims to delve into the pathophysiological mechanisms implicated in the CPIP model, specifically focusing on oxidative stress and inflammation, with the ultimate goal of proposing innovative therapeutic strategies for alleviating the symptoms of CRPS-I.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.