A novel protein encoded by circCOPA inhibits the malignant phenotype of glioblastoma cells and increases their sensitivity to temozolomide by disrupting the NONO-SFPQ complex.
Dazhao Peng, Cheng Wei, Boyuan Jing, Runze Yu, Zhenyu Zhang, Lei Han
{"title":"A novel protein encoded by circCOPA inhibits the malignant phenotype of glioblastoma cells and increases their sensitivity to temozolomide by disrupting the NONO-SFPQ complex.","authors":"Dazhao Peng, Cheng Wei, Boyuan Jing, Runze Yu, Zhenyu Zhang, Lei Han","doi":"10.1038/s41419-024-07010-z","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GBM) represents a primary malignant brain tumor. Temozolomide resistance is a major hurdle in GBM treatment. Proteins encoded by circular RNAs (circRNAs) can modulate the sensitivity of multiple tumor chemotherapies. However, the impact of circRNA-encoded proteins on GBM sensitivity to temozolomide remains unknown. Herein, we discover a circRNA (circCOPA) through the circRNA microarray profile in GBM samples, which can encode a novel 99 amino acid protein (COPA-99aa) through its internal ribosome entry site. Functionally, circCOPA overexpression in GBM cells inhibits cell proliferation, migration, and invasion in vitro and growth in vivo. Rather than itself, circCOPA mainly functions as a suppressive effector by encoding COPA-99aa. Moreover, we reveal that circCOPA is downregulated in GBM tissues and high expression of circCOPA is related to a better prognosis in GBM patients. Mechanistically, a heteromer of SFPQ and NONO is required for double-strand DNA break repair. COPA-99aa disrupts the dimerization of NONO and SFPQ by separately binding with the NONO and SFPQ proteins, thus resulting in the inhibition of proliferation or invasion and the increase of temozolomide-induced DNA damage in GBM cells. Collectively, our data suggest that circCOPA mainly contributes to inhibiting the GBM malignant phenotype through its encoded COPA-99aa and that COPA-99aa increases temozolomide-induced DNA damage by interfering with the dimerization of NONO and SFPQ. Restoring circCOPA or COPA-99aa may increase the sensitivity of patients to temozolomide.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345445/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07010-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma (GBM) represents a primary malignant brain tumor. Temozolomide resistance is a major hurdle in GBM treatment. Proteins encoded by circular RNAs (circRNAs) can modulate the sensitivity of multiple tumor chemotherapies. However, the impact of circRNA-encoded proteins on GBM sensitivity to temozolomide remains unknown. Herein, we discover a circRNA (circCOPA) through the circRNA microarray profile in GBM samples, which can encode a novel 99 amino acid protein (COPA-99aa) through its internal ribosome entry site. Functionally, circCOPA overexpression in GBM cells inhibits cell proliferation, migration, and invasion in vitro and growth in vivo. Rather than itself, circCOPA mainly functions as a suppressive effector by encoding COPA-99aa. Moreover, we reveal that circCOPA is downregulated in GBM tissues and high expression of circCOPA is related to a better prognosis in GBM patients. Mechanistically, a heteromer of SFPQ and NONO is required for double-strand DNA break repair. COPA-99aa disrupts the dimerization of NONO and SFPQ by separately binding with the NONO and SFPQ proteins, thus resulting in the inhibition of proliferation or invasion and the increase of temozolomide-induced DNA damage in GBM cells. Collectively, our data suggest that circCOPA mainly contributes to inhibiting the GBM malignant phenotype through its encoded COPA-99aa and that COPA-99aa increases temozolomide-induced DNA damage by interfering with the dimerization of NONO and SFPQ. Restoring circCOPA or COPA-99aa may increase the sensitivity of patients to temozolomide.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism