{"title":"Current Approaches on Transfersomal Patch: A Noninvasive Innovative Booster for Improved Transdermal Drug Delivery.","authors":"Piyali Khamkat, Vivek Barik, Snehamayee Mohapatra, Dipanjan Karati, Swarupananda Mukherjee","doi":"10.2174/0113892010315069240805074205","DOIUrl":null,"url":null,"abstract":"<p><p>Pharmaceutical research is increasingly focusing on transdermal drug delivery due to its potential for improved compliance and bioavailability. However, it is challenging due to the tight intracellular junctions present in the skin. Researchers have developed noninvasive methods, like transfersomes, to overcome these challenges. Transfersomes are ultra-deformable vesicles utilized for improved transdermal applications. They are made up of a phospholipid-rich lipid bilayer, an edge activator, and an ethanol/aqueous core. After topical treatment, transfersomes can penetrate deeper skin regions, delivering larger concentrations of active compounds. A transfersomal patch is applied to the skin and left for an extended period of time to allow a large dose of medication to permeate into the bloodstream. The transfersomal patch offers an advantage over the transfersomal gel because it allows the transfersomes to be applied under occlusive conditions, resulting in greater permeability, a lower amount of active medication, and a steady supply rather than a massive dose. This review represents the preparation and evaluation of transfersomal patches, recent research approaches, and future aspects of transfersomal patches. This study suggests that drug-loaded transfersomal patches could be a unique option to avoid invasive therapy.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010315069240805074205","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pharmaceutical research is increasingly focusing on transdermal drug delivery due to its potential for improved compliance and bioavailability. However, it is challenging due to the tight intracellular junctions present in the skin. Researchers have developed noninvasive methods, like transfersomes, to overcome these challenges. Transfersomes are ultra-deformable vesicles utilized for improved transdermal applications. They are made up of a phospholipid-rich lipid bilayer, an edge activator, and an ethanol/aqueous core. After topical treatment, transfersomes can penetrate deeper skin regions, delivering larger concentrations of active compounds. A transfersomal patch is applied to the skin and left for an extended period of time to allow a large dose of medication to permeate into the bloodstream. The transfersomal patch offers an advantage over the transfersomal gel because it allows the transfersomes to be applied under occlusive conditions, resulting in greater permeability, a lower amount of active medication, and a steady supply rather than a massive dose. This review represents the preparation and evaluation of transfersomal patches, recent research approaches, and future aspects of transfersomal patches. This study suggests that drug-loaded transfersomal patches could be a unique option to avoid invasive therapy.
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.