Deep learning links localized digital pathology phenotypes with transcriptional subtype and patient outcome in glioblastoma.

IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES GigaScience Pub Date : 2024-01-02 DOI:10.1093/gigascience/giae057
Thomas Roetzer-Pejrimovsky, Karl-Heinz Nenning, Barbara Kiesel, Johanna Klughammer, Martin Rajchl, Bernhard Baumann, Georg Langs, Adelheid Woehrer
{"title":"Deep learning links localized digital pathology phenotypes with transcriptional subtype and patient outcome in glioblastoma.","authors":"Thomas Roetzer-Pejrimovsky, Karl-Heinz Nenning, Barbara Kiesel, Johanna Klughammer, Martin Rajchl, Bernhard Baumann, Georg Langs, Adelheid Woehrer","doi":"10.1093/gigascience/giae057","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Deep learning has revolutionized medical image analysis in cancer pathology, where it had a substantial clinical impact by supporting the diagnosis and prognostic rating of cancer. Among the first available digital resources in the field of brain cancer is glioblastoma, the most common and fatal brain cancer. At the histologic level, glioblastoma is characterized by abundant phenotypic variability that is poorly linked with patient prognosis. At the transcriptional level, 3 molecular subtypes are distinguished with mesenchymal-subtype tumors being associated with increased immune cell infiltration and worse outcome.</p><p><strong>Results: </strong>We address genotype-phenotype correlations by applying an Xception convolutional neural network to a discovery set of 276 digital hematozylin and eosin (H&E) slides with molecular subtype annotation and an independent The Cancer Genome Atlas-based validation cohort of 178 cases. Using this approach, we achieve high accuracy in H&E-based mapping of molecular subtypes (area under the curve for classical, mesenchymal, and proneural = 0.84, 0.81, and 0.71, respectively; P < 0.001) and regions associated with worse outcome (univariable survival model P < 0.001, multivariable P = 0.01). The latter were characterized by higher tumor cell density (P < 0.001), phenotypic variability of tumor cells (P < 0.001), and decreased T-cell infiltration (P = 0.017).</p><p><strong>Conclusions: </strong>We modify a well-known convolutional neural network architecture for glioblastoma digital slides to accurately map the spatial distribution of transcriptional subtypes and regions predictive of worse outcome, thereby showcasing the relevance of artificial intelligence-enabled image mining in brain cancer.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":null,"pages":null},"PeriodicalIF":11.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345537/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae057","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Deep learning has revolutionized medical image analysis in cancer pathology, where it had a substantial clinical impact by supporting the diagnosis and prognostic rating of cancer. Among the first available digital resources in the field of brain cancer is glioblastoma, the most common and fatal brain cancer. At the histologic level, glioblastoma is characterized by abundant phenotypic variability that is poorly linked with patient prognosis. At the transcriptional level, 3 molecular subtypes are distinguished with mesenchymal-subtype tumors being associated with increased immune cell infiltration and worse outcome.

Results: We address genotype-phenotype correlations by applying an Xception convolutional neural network to a discovery set of 276 digital hematozylin and eosin (H&E) slides with molecular subtype annotation and an independent The Cancer Genome Atlas-based validation cohort of 178 cases. Using this approach, we achieve high accuracy in H&E-based mapping of molecular subtypes (area under the curve for classical, mesenchymal, and proneural = 0.84, 0.81, and 0.71, respectively; P < 0.001) and regions associated with worse outcome (univariable survival model P < 0.001, multivariable P = 0.01). The latter were characterized by higher tumor cell density (P < 0.001), phenotypic variability of tumor cells (P < 0.001), and decreased T-cell infiltration (P = 0.017).

Conclusions: We modify a well-known convolutional neural network architecture for glioblastoma digital slides to accurately map the spatial distribution of transcriptional subtypes and regions predictive of worse outcome, thereby showcasing the relevance of artificial intelligence-enabled image mining in brain cancer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习将局部数字病理表型与胶质母细胞瘤的转录亚型和患者预后联系起来。
背景:深度学习彻底改变了癌症病理学中的医学图像分析,通过支持癌症的诊断和预后评级,对临床产生了重大影响。在脑癌领域,胶质母细胞瘤是首批可用的数字资源之一,它是最常见也是最致命的脑癌。在组织学层面,胶质母细胞瘤的特点是表型变化多端,与患者的预后关系不大。在转录水平上,有3种分子亚型,间质亚型肿瘤与免疫细胞浸润增加和预后较差有关:结果:我们将 Xception 卷积神经网络应用于包含分子亚型注释的 276 张数字化血液染色和伊红(H&E)切片的发现集以及基于癌症基因组图谱的 178 例独立验证队列,从而解决了基因型与表型之间的相关性问题。利用这种方法,我们在基于 H&E 的分子亚型图谱绘制方面取得了很高的准确度(经典、间充质和绒毛膜的曲线下面积分别为 0.84、0.81 和 0.71;P < 0.001),并绘制出了与较差预后相关的区域(单变量生存模型 P < 0.001,多变量 P = 0.01)。后者的特点是肿瘤细胞密度较高(P < 0.001)、肿瘤细胞表型可变(P < 0.001)和 T 细胞浸润减少(P = 0.017):我们针对胶质母细胞瘤数字切片修改了著名的卷积神经网络架构,以准确绘制转录亚型的空间分布图和预示较差预后的区域,从而展示了人工智能图像挖掘在脑癌中的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
GigaScience
GigaScience MULTIDISCIPLINARY SCIENCES-
CiteScore
15.50
自引率
1.10%
发文量
119
审稿时长
1 weeks
期刊介绍: GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.
期刊最新文献
IPEV: identification of prokaryotic and eukaryotic virus-derived sequences in virome using deep learning Large-scale genomic survey with deep learning-based method reveals strain-level phage specificity determinants An effective strategy for assembling the sex-limited chromosome Enhanced bovine genome annotation through integration of transcriptomics and epi-transcriptomics datasets facilitates genomic biology Korea4K: whole genome sequences of 4,157 Koreans with 107 phenotypes derived from extensive health check-ups
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1