Near millimolar concentration of nucleosomes in mitotic chromosomes from late prometaphase into anaphase.

IF 7.4 1区 生物学 Q1 CELL BIOLOGY Journal of Cell Biology Pub Date : 2024-11-04 Epub Date: 2024-08-26 DOI:10.1083/jcb.202403165
Fernanda Cisneros-Soberanis, Eva L Simpson, Alison J Beckett, Nina Pucekova, Samuel Corless, Natalia Y Kochanova, Ian A Prior, Daniel G Booth, William C Earnshaw
{"title":"Near millimolar concentration of nucleosomes in mitotic chromosomes from late prometaphase into anaphase.","authors":"Fernanda Cisneros-Soberanis, Eva L Simpson, Alison J Beckett, Nina Pucekova, Samuel Corless, Natalia Y Kochanova, Ian A Prior, Daniel G Booth, William C Earnshaw","doi":"10.1083/jcb.202403165","DOIUrl":null,"url":null,"abstract":"<p><p>Chromosome compaction is a key feature of mitosis and critical for accurate chromosome segregation. However, a precise quantitative analysis of chromosome geometry during mitotic progression is lacking. Here, we use volume electron microscopy to map, with nanometer precision, chromosomes from prometaphase through telophase in human RPE1 cells. During prometaphase, chromosomes acquire a smoother surface, their arms shorten, and the primary centromeric constriction is formed. The chromatin is progressively compacted, ultimately reaching a remarkable nucleosome concentration of over 750 µM in late prometaphase that remains relatively constant during metaphase and early anaphase. Surprisingly, chromosomes then increase their volume in late anaphase prior to deposition of the nuclear envelope. The plateau of total chromosome volume from late prometaphase through early anaphase described here is consistent with proposals that the final stages of chromatin condensation in mitosis involve a limit density, such as might be expected for a process involving phase separation.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346515/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1083/jcb.202403165","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chromosome compaction is a key feature of mitosis and critical for accurate chromosome segregation. However, a precise quantitative analysis of chromosome geometry during mitotic progression is lacking. Here, we use volume electron microscopy to map, with nanometer precision, chromosomes from prometaphase through telophase in human RPE1 cells. During prometaphase, chromosomes acquire a smoother surface, their arms shorten, and the primary centromeric constriction is formed. The chromatin is progressively compacted, ultimately reaching a remarkable nucleosome concentration of over 750 µM in late prometaphase that remains relatively constant during metaphase and early anaphase. Surprisingly, chromosomes then increase their volume in late anaphase prior to deposition of the nuclear envelope. The plateau of total chromosome volume from late prometaphase through early anaphase described here is consistent with proposals that the final stages of chromatin condensation in mitosis involve a limit density, such as might be expected for a process involving phase separation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从有丝分裂后期到无丝分裂期,有丝分裂染色体中的核小体浓度接近毫摩尔。
染色体压实是有丝分裂的一个关键特征,也是染色体准确分离的关键。然而,目前还缺乏对有丝分裂过程中染色体几何形状的精确定量分析。在这里,我们使用体电子显微镜以纳米级精度绘制了人类 RPE1 细胞从有丝分裂后期到端期的染色体图谱。在端粒期,染色体表面变得更加光滑,染色体臂缩短,并形成初级中心粒收缩。染色质逐渐压缩,最终在原核后期达到超过 750 µM 的显著核小体浓度,并在分裂后期和无核初期保持相对稳定。令人惊讶的是,染色体在核包膜沉积之前的无丝分裂后期体积会增大。这里描述的染色体总体积从有丝分裂后期到无丝分裂初期的高原现象,与有丝分裂中染色质凝聚的最后阶段涉及极限密度的建议是一致的,如涉及相分离的过程所预期的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cell Biology
Journal of Cell Biology 生物-细胞生物学
CiteScore
12.60
自引率
2.60%
发文量
213
审稿时长
1 months
期刊介绍: The Journal of Cell Biology (JCB) is a comprehensive journal dedicated to publishing original discoveries across all realms of cell biology. We invite papers presenting novel cellular or molecular advancements in various domains of basic cell biology, along with applied cell biology research in diverse systems such as immunology, neurobiology, metabolism, virology, developmental biology, and plant biology. We enthusiastically welcome submissions showcasing significant findings of interest to cell biologists, irrespective of the experimental approach.
期刊最新文献
Arrayed CRISPRi library to suppress genes required for Schizosaccharomyces pombe viability. Postsynaptic BMP signaling regulates myonuclear properties in Drosophila larval muscles. Heterogeneity of late endosome/lysosomes shown by multiplexed DNA-PAINT imaging. Kinetochores grip microtubules with directionally asymmetric strength. Definition of phosphatidylinositol 4,5-bisphosphate distribution by freeze-fracture replica labeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1