Kayleigh C Hauri, Anthony L Schilmiller, Elisabeth Darling, Amanda D Howland, David S Douches, Zsofia Szendrei
{"title":"Constitutive Level of Specialized Secondary Metabolites Affects Plant Phytohormone Response to Above- and Belowground Herbivores.","authors":"Kayleigh C Hauri, Anthony L Schilmiller, Elisabeth Darling, Amanda D Howland, David S Douches, Zsofia Szendrei","doi":"10.1007/s10886-024-01538-2","DOIUrl":null,"url":null,"abstract":"<p><p>Plants defend themselves chemically against herbivory through secondary metabolites and phytohormones. Few studies have investigated how constitutive variation in secondary metabolites contributes to systemic herbivory response. We hypothesized that plants with lower constitutive defenses would induce a stronger phytohormone response to spatially separated herbivory than plants with high constitutive defense. We used growth chamber bioassays to investigate how aboveground herbivory by Colorado potato beetle (Leptinotarsa decemlineata, CPB) and belowground herbivory by northern root-knot nematode (Meloidogyne hapla, RKN) altered phytohormones and glycoalkaloids in roots and shoots of two lines of wild potato (Solanum chacoense). These lines had different constitutive levels of chemical defense, particularly leptine glycoalkaloids, which are only present in aboveground tissues. We also determined how these differences influenced the preference and performance of CPB. The susceptible wild potato line responded to aboveground damage by CPB through induction of jasmonic acid (JA) and OPDA. However, when challenged by both RKN and CPB, the susceptible line retained high levels of JA, but not OPDA. Beetles gained more mass after feeding on the susceptible line compared to the resistant line, but were not affected by nematode presence. Belowground, JA, JA-Isoleucine, and OPDA were higher in the resistant line compared to the susceptible line, and some compounds demonstrated response to local herbivory. In contrast, the susceptible line did not induce phytohormone defenses belowground. These findings allow us to predict that constitutive level of defense may influence the threshold of herbivory that may lead to plant-mediated effects on spatially separated herbivores.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":" ","pages":"549-561"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493795/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10886-024-01538-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plants defend themselves chemically against herbivory through secondary metabolites and phytohormones. Few studies have investigated how constitutive variation in secondary metabolites contributes to systemic herbivory response. We hypothesized that plants with lower constitutive defenses would induce a stronger phytohormone response to spatially separated herbivory than plants with high constitutive defense. We used growth chamber bioassays to investigate how aboveground herbivory by Colorado potato beetle (Leptinotarsa decemlineata, CPB) and belowground herbivory by northern root-knot nematode (Meloidogyne hapla, RKN) altered phytohormones and glycoalkaloids in roots and shoots of two lines of wild potato (Solanum chacoense). These lines had different constitutive levels of chemical defense, particularly leptine glycoalkaloids, which are only present in aboveground tissues. We also determined how these differences influenced the preference and performance of CPB. The susceptible wild potato line responded to aboveground damage by CPB through induction of jasmonic acid (JA) and OPDA. However, when challenged by both RKN and CPB, the susceptible line retained high levels of JA, but not OPDA. Beetles gained more mass after feeding on the susceptible line compared to the resistant line, but were not affected by nematode presence. Belowground, JA, JA-Isoleucine, and OPDA were higher in the resistant line compared to the susceptible line, and some compounds demonstrated response to local herbivory. In contrast, the susceptible line did not induce phytohormone defenses belowground. These findings allow us to predict that constitutive level of defense may influence the threshold of herbivory that may lead to plant-mediated effects on spatially separated herbivores.
期刊介绍:
Journal of Chemical Ecology is devoted to promoting an ecological understanding of the origin, function, and significance of natural chemicals that mediate interactions within and between organisms. Such relationships, often adaptively important, comprise the oldest of communication systems in terrestrial and aquatic environments. With recent advances in methodology for elucidating structures of the chemical compounds involved, a strong interdisciplinary association has developed between chemists and biologists which should accelerate understanding of these interactions in nature.
Scientific contributions, including review articles, are welcome from either members or nonmembers of the International Society of Chemical Ecology. Manuscripts must be in English and may include original research in biological and/or chemical aspects of chemical ecology. They may include substantive observations of interactions in nature, the elucidation of the chemical compounds involved, the mechanisms of their production and reception, and the translation of such basic information into survey and control protocols. Sufficient biological and chemical detail should be given to substantiate conclusions and to permit results to be evaluated and reproduced.