Yiming Dai , Lili Zhang , Yaowen Zhang , Yunsheng Yao , Renlong Wang
{"title":"Analysis of stress field in the head area of the Three Gorges Reservoir based on coupled fluid-solid theory","authors":"Yiming Dai , Lili Zhang , Yaowen Zhang , Yunsheng Yao , Renlong Wang","doi":"10.1016/j.tecto.2024.230482","DOIUrl":null,"url":null,"abstract":"<div><p>The Three Gorges Reservoir, one of the largest water conservation system in the world, has been of keen interest to scientists globally since its impoundment. After construction of the dam, there has been a significant increase in seismic activity in the head area of the reservoir. It is generally accepted that earthquakes in this region are predominantly caused by the Jiuwanxi and Xiannvshan faults. This study focused on the stress changes occurring in the research area. A three-dimensional finite element model of the reservoir area was constructed using the geological structure and digital ground elevation data of the reservoir area. The fluid-solid coupling theory was applied to calculate the dynamic spatial changes in pore pressure and Coulomb stress in the faults and surrounding rocks during reservoir impoundment. The findings indicated that the added head pore water pressure at the bottom of the reservoir had a maximum impact range of approximately −2800 m on the surrounding rock, whereas the Xiannvshan and Jiuwanxi faults had a maximum diffusion range of approximately −4300 m. Rock permeability also played a significant role in the water storage process. During the 1 56 m water impoundment stage, owing to rapid water storage activity, stress could not be transmitted to both sides in a timely manner, resulting in the formation of an extreme stress change zone at −4000 m inside the fault. This may have been the reason for the frequent earthquakes during this stage. The 17 5 m cycle water storage stage also exhibited a significant degree of seismicity, potentially attributable to the long-term infiltration of reservoir water and accumulation of stress in the previous stage. The stress in the study area at the four stages are in a process of accumulation-release-accumulation-release.</p></div>","PeriodicalId":22257,"journal":{"name":"Tectonophysics","volume":"889 ","pages":"Article 230482"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tectonophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040195124002841","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Three Gorges Reservoir, one of the largest water conservation system in the world, has been of keen interest to scientists globally since its impoundment. After construction of the dam, there has been a significant increase in seismic activity in the head area of the reservoir. It is generally accepted that earthquakes in this region are predominantly caused by the Jiuwanxi and Xiannvshan faults. This study focused on the stress changes occurring in the research area. A three-dimensional finite element model of the reservoir area was constructed using the geological structure and digital ground elevation data of the reservoir area. The fluid-solid coupling theory was applied to calculate the dynamic spatial changes in pore pressure and Coulomb stress in the faults and surrounding rocks during reservoir impoundment. The findings indicated that the added head pore water pressure at the bottom of the reservoir had a maximum impact range of approximately −2800 m on the surrounding rock, whereas the Xiannvshan and Jiuwanxi faults had a maximum diffusion range of approximately −4300 m. Rock permeability also played a significant role in the water storage process. During the 1 56 m water impoundment stage, owing to rapid water storage activity, stress could not be transmitted to both sides in a timely manner, resulting in the formation of an extreme stress change zone at −4000 m inside the fault. This may have been the reason for the frequent earthquakes during this stage. The 17 5 m cycle water storage stage also exhibited a significant degree of seismicity, potentially attributable to the long-term infiltration of reservoir water and accumulation of stress in the previous stage. The stress in the study area at the four stages are in a process of accumulation-release-accumulation-release.
期刊介绍:
The prime focus of Tectonophysics will be high-impact original research and reviews in the fields of kinematics, structure, composition, and dynamics of the solid arth at all scales. Tectonophysics particularly encourages submission of papers based on the integration of a multitude of geophysical, geological, geochemical, geodynamic, and geotectonic methods