Emilija Milović, Sanja Lj. Matić, Jelena S. Katanić Stanković, Nikola Srećković, Ignjat Filipović, Jovana Bradić, Anica Petrović, Vladimir Jakovljević, Natalia Busto Vazquez, Nenad Janković
{"title":"DNA interaction of selected tetrahydropyrimidine and its effects against CCl4-induced hepatotoxicity in vivo: Part II","authors":"Emilija Milović, Sanja Lj. Matić, Jelena S. Katanić Stanković, Nikola Srećković, Ignjat Filipović, Jovana Bradić, Anica Petrović, Vladimir Jakovljević, Natalia Busto Vazquez, Nenad Janković","doi":"10.1002/ardp.202400409","DOIUrl":null,"url":null,"abstract":"<p>Tetrahydropyrimidine (compound <b>A</b> = methyl 4-[4′-(heptyloxy)-3′-methoxyphenyl]-1,6-dimethyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate) was chosen for in vivo studies after exhibiting noteworthy in vitro activity against the K562 and MDA-MB-231 cell lines, with IC<sub>50</sub> values of 9.20 ± 0.14 µM and 12.76 ± 1.93 µM, respectively. According to experimental (fluorescence titration, viscosity, and differential scanning calorimetry) results, <b>A</b> interacts with DNA <i>via</i> the minor groove. In vivo, acute oral toxicity studies in Wistar albino rats proved no noticeable symptoms of either toxicity or death during the follow-up period. Genotoxic and antigenotoxic studies at three different concentrations of <b>A</b> (5, 10, and 20 mg/kg of body weight) in Wistar albino rats showed that the dose of 5 mg/kg body weight did not cause DNA damage and had a remarkable DNA protective activity against CCl<sub>4</sub>-induced DNA damage, with a percentage reduction of 78.7%. It is also important to note that, under the investigated concentrations of <b>A</b>, liver damage is not observed. Considering all experimental outcomes realized under various in vivo investigations (acute oral toxicity, genotoxicity, antigenotoxicity, and biochemical tests), compound <b>A</b> could be a promising candidate for further clinical testing.</p>","PeriodicalId":128,"journal":{"name":"Archiv der Pharmazie","volume":"357 11","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Pharmazie","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ardp.202400409","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tetrahydropyrimidine (compound A = methyl 4-[4′-(heptyloxy)-3′-methoxyphenyl]-1,6-dimethyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate) was chosen for in vivo studies after exhibiting noteworthy in vitro activity against the K562 and MDA-MB-231 cell lines, with IC50 values of 9.20 ± 0.14 µM and 12.76 ± 1.93 µM, respectively. According to experimental (fluorescence titration, viscosity, and differential scanning calorimetry) results, A interacts with DNA via the minor groove. In vivo, acute oral toxicity studies in Wistar albino rats proved no noticeable symptoms of either toxicity or death during the follow-up period. Genotoxic and antigenotoxic studies at three different concentrations of A (5, 10, and 20 mg/kg of body weight) in Wistar albino rats showed that the dose of 5 mg/kg body weight did not cause DNA damage and had a remarkable DNA protective activity against CCl4-induced DNA damage, with a percentage reduction of 78.7%. It is also important to note that, under the investigated concentrations of A, liver damage is not observed. Considering all experimental outcomes realized under various in vivo investigations (acute oral toxicity, genotoxicity, antigenotoxicity, and biochemical tests), compound A could be a promising candidate for further clinical testing.
期刊介绍:
Archiv der Pharmazie - Chemistry in Life Sciences is an international journal devoted to research and development in all fields of pharmaceutical and medicinal chemistry. Emphasis is put on papers combining synthetic organic chemistry, structural biology, molecular modelling, bioorganic chemistry, natural products chemistry, biochemistry or analytical methods with pharmaceutical or medicinal aspects such as biological activity. The focus of this journal is put on original research papers, but other scientifically valuable contributions (e.g. reviews, minireviews, highlights, symposia contributions, discussions, and essays) are also welcome.