Characterization and Prediction of Organic Anion Transporting Polypeptide 1B Activity in Prostate Cancer Patients on Abiraterone Acetate Using Endogenous Biomarker Coproporphyrin I.

IF 4.4 3区 医学 Q1 PHARMACOLOGY & PHARMACY Drug Metabolism and Disposition Pub Date : 2024-10-16 DOI:10.1124/dmd.124.001878
Ziteng Wang, Kylie Hoi Yan Luk, Eleanor Jing Yi Cheong, Sin Mun Tham, Revathi Periaswami, Poh Choo Toh, Ziting Wang, Qing Hui Wu, Woon Chau Tsang, Arshvin Kesavan, Alvin Seng Cheong Wong, Patrick Thomas Wong, Felicia Lim, Edmund Chiong, Eric Chun Yong Chan
{"title":"Characterization and Prediction of Organic Anion Transporting Polypeptide 1B Activity in Prostate Cancer Patients on Abiraterone Acetate Using Endogenous Biomarker Coproporphyrin I.","authors":"Ziteng Wang, Kylie Hoi Yan Luk, Eleanor Jing Yi Cheong, Sin Mun Tham, Revathi Periaswami, Poh Choo Toh, Ziting Wang, Qing Hui Wu, Woon Chau Tsang, Arshvin Kesavan, Alvin Seng Cheong Wong, Patrick Thomas Wong, Felicia Lim, Edmund Chiong, Eric Chun Yong Chan","doi":"10.1124/dmd.124.001878","DOIUrl":null,"url":null,"abstract":"<p><p>Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are important hepatic transporters. We previously identified OATP1B3 being critically implicated in the disposition of abiraterone. We aimed to further investigate the effects of abiraterone on the activities of OATP1B1 and OATP1B3 utilizing a validated endogenous biomarker coproporphyrin I (CP-I). We used OATP1B-transfected cells to characterize the inhibitory potential of abiraterone against OATP1B-mediated uptake of CP-I. Inhibition constant (<i>K</i> <sub>i</sub>) was incorporated into our physiologically based pharmacokinetic (PBPK) modeling to simulate the systemic exposures of CP-I among cancer populations receiving either our model-informed 500 mg or clinically approved 1000 mg abiraterone acetate (AA) dosage. Simulated data were compared with clinical CP-I concentrations determined among our nine metastatic prostate cancer patients receiving 500 mg AA treatment. Abiraterone inhibited OATP1B3-mediated, but not OATP1B1-mediated, uptake of CP-I in vitro, with an estimated <i>K</i> <sub>i</sub> of 3.93 <i>μ</i>M. Baseline CP-I concentrations were simulated to be 0.81 ± 0.26 ng/ml and determined to be 0.72 ± 0.16 ng/ml among metastatic prostate cancer patients, both of which were higher than those observed for healthy subjects. PBPK simulations revealed an absence of OATP1B3-mediated interaction between abiraterone and CP-I. Our clinical observations confirmed that CP-I concentrations remained comparable to baseline levels up to 12 weeks post 500 mg AA treatment. Using CP-I as an endogenous biomarker, we identified the inhibition of abiraterone on OATP1B3 but not OATP1B1 in vitro, which was predicted and observed to be clinically insignificant. We concluded that the interaction risk between AA and substrates of OATP1Bs is low. SIGNIFICANCE STATEMENT: The authors used the endogenous biomarker coproporphyrin I (CP-I) and identified abiraterone as a moderate inhibitor of organic anion transporting polypeptide (OATP) 1B3 in vitro. Subsequent physiologically based pharmacokinetic (PBPK) simulations and clinical observations suggested an absence of OATP1B-mediated interaction between abiraterone and CP-I among prostate cancer patients. This multipronged study concluded that the interaction risk between abiraterone acetate and substrates of OATP1Bs is low, demonstrating the application of PBPK-CP-I modeling in predicting OATP1B-mediated interaction implicating abiraterone.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":" ","pages":"1356-1362"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Disposition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/dmd.124.001878","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are important hepatic transporters. We previously identified OATP1B3 being critically implicated in the disposition of abiraterone. We aimed to further investigate the effects of abiraterone on the activities of OATP1B1 and OATP1B3 utilizing a validated endogenous biomarker coproporphyrin I (CP-I). We used OATP1B-transfected cells to characterize the inhibitory potential of abiraterone against OATP1B-mediated uptake of CP-I. Inhibition constant (K i) was incorporated into our physiologically based pharmacokinetic (PBPK) modeling to simulate the systemic exposures of CP-I among cancer populations receiving either our model-informed 500 mg or clinically approved 1000 mg abiraterone acetate (AA) dosage. Simulated data were compared with clinical CP-I concentrations determined among our nine metastatic prostate cancer patients receiving 500 mg AA treatment. Abiraterone inhibited OATP1B3-mediated, but not OATP1B1-mediated, uptake of CP-I in vitro, with an estimated K i of 3.93 μM. Baseline CP-I concentrations were simulated to be 0.81 ± 0.26 ng/ml and determined to be 0.72 ± 0.16 ng/ml among metastatic prostate cancer patients, both of which were higher than those observed for healthy subjects. PBPK simulations revealed an absence of OATP1B3-mediated interaction between abiraterone and CP-I. Our clinical observations confirmed that CP-I concentrations remained comparable to baseline levels up to 12 weeks post 500 mg AA treatment. Using CP-I as an endogenous biomarker, we identified the inhibition of abiraterone on OATP1B3 but not OATP1B1 in vitro, which was predicted and observed to be clinically insignificant. We concluded that the interaction risk between AA and substrates of OATP1Bs is low. SIGNIFICANCE STATEMENT: The authors used the endogenous biomarker coproporphyrin I (CP-I) and identified abiraterone as a moderate inhibitor of organic anion transporting polypeptide (OATP) 1B3 in vitro. Subsequent physiologically based pharmacokinetic (PBPK) simulations and clinical observations suggested an absence of OATP1B-mediated interaction between abiraterone and CP-I among prostate cancer patients. This multipronged study concluded that the interaction risk between abiraterone acetate and substrates of OATP1Bs is low, demonstrating the application of PBPK-CP-I modeling in predicting OATP1B-mediated interaction implicating abiraterone.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用内源性生物标志物共卟啉 I 鉴定和预测服用醋酸阿比特龙的前列腺癌患者体内 OATP1B 的活性。
有机阴离子转运多肽(OATP)1B1 和 OATP1B3 是重要的肝脏转运体。我们以前曾发现 OATP1B3 与阿比特龙的处置有重要关系。我们旨在利用有效的内源性生物标记物共卟啉 I(CP-I)进一步研究阿比特龙对 OATP1B1 和 OATP1B3 活性的影响。我们利用转染了 OATP1B 的细胞来鉴定阿比特龙对 OATP1B 介导的 CP-I 摄取的抑制潜力。抑制常数(Ki)被纳入我们的生理学药代动力学(PBPK)模型,以模拟接受我们根据模型计算的 500 毫克或临床批准的 1000 毫克醋酸阿比特龙(AA)剂量的癌症患者的 CP-I 全身暴露情况。模拟数据与接受 500 毫克 AA 治疗的 9 位转移性前列腺癌患者的临床 CP-I 浓度进行了比较。阿比特龙抑制了体外由 OATP1B3 而非 OATP1B1 介导的 CP-I 摄取,估计 Ki 为 3.93 µM。在转移性前列腺癌患者中,CP-I的模拟基线浓度为0.81{正负}0.26纳克/毫升,测定值为0.72{正负}0.16纳克/毫升,均高于健康受试者。PBPK模拟显示阿比特龙与CP-I之间不存在OATP1B3介导的相互作用。我们的临床观察证实,在接受 500 毫克 AA 治疗 12 周后,CP-I 浓度仍与基线水平相当。利用 CP-I 作为内源性生物标记物,我们在体外确定了阿比特龙对 OATP1B3 的抑制作用,而不是对 OATP1B1 的抑制作用。我们认为 AA 与 OATP1Bs 底物之间的相互作用风险较低。意义声明 我们利用内源性生物标志物共卟啉 I(CP-I),在体外确定阿比特龙是有机阴离子转运多肽(OATP)1B3 的中度抑制剂。随后进行的生理学药代动力学(PBPK)模拟和临床观察表明,阿比特龙与前列腺癌患者体内的 CP-I 之间不存在由 OATP1B 介导的相互作用。这项多管齐下的研究得出结论,醋酸阿比特龙与 OATP1Bs 底物之间的相互作用风险很低,证明了 PBPK-CP-I 模型在预测阿比特龙与 OATP1B 介导的相互作用中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
12.80%
发文量
128
审稿时长
3 months
期刊介绍: An important reference for all pharmacology and toxicology departments, DMD is also a valuable resource for medicinal chemists involved in drug design and biochemists with an interest in drug metabolism, expression of drug metabolizing enzymes, and regulation of drug metabolizing enzyme gene expression. Articles provide experimental results from in vitro and in vivo systems that bring you significant and original information on metabolism and disposition of endogenous and exogenous compounds, including pharmacologic agents and environmental chemicals.
期刊最新文献
Absorption, Distribution, Metabolism, and Excretion of Icenticaftor (QBW251) in Healthy Male Volunteers at Steady State and In Vitro Phenotyping of Major Metabolites. Differential Selectivity of Human and Mouse ABCC4/Abcc4 for Arsenic Metabolites. CYP P450 and non-CYP P450 Drug Metabolizing Enzyme Families Exhibit Differential Sensitivities towards Proinflammatory Cytokine Modulation. Quantitative Prediction of Drug-Drug Interactions Caused by CYP3A Induction Using Endogenous Biomarker 4β-Hydroxycholesterol. Utility of Common In Vitro Systems for Predicting Circulating Metabolites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1