{"title":"Prediction models of intravenous glucocorticoids therapy response in thyroid eye disease.","authors":"Haiyang Zhang, Shuo Wu, Shuyu Hu, Xianqun Fan, Xuefei Song, Tienan Feng, Huifang Zhou","doi":"10.1530/ETJ-24-0122","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Thyroid eye disease (TED) is an autoimmune orbital disease, with intravenous glucocorticoid (IVGC) therapy as the first-line treatment. Due to uncertain response rates and possible side effects, various prediction models have been developed to predict IVGC therapy outcomes.</p><p><strong>Methods: </strong>A thorough search was conducted in PubMed, Embase, and Web of Science databases. Data extraction included publication details, prediction model content, and performance. Statistical analysis was performed using R software, including heterogeneity evaluation, publication bias, subgroup analysis, and sensitivity analysis. Forest plots were utilized for result visualization.</p><p><strong>Results: </strong>Of the 12 eligible studies, 47 prediction models were extracted. All included studies exhibited a low-to-moderate risk of bias. The pooled area under the receiver operating characteristic curve (AUC) and the combined sensitivity and specificity for the models were 0.81, 0.75, and 0.79, respectively. In view of heterogeneity, multiple meta-regression and subgroup analysis were conducted, which showed that marker and modeling types may be the possible causes of heterogeneity (P < 0.001). Notably, imaging metrics alone (AUC = 0.81) or clinical characteristics combined with other markers (AUC = 0.87), incorporating with multivariate regression (AUC = 0.84) or radiomics analysis (AUC = 0.91), yielded robust and reliable prediction outcomes.</p><p><strong>Conclusion: </strong>This meta-analysis comprehensively reviews the predictive models for IVGC therapy response in TED. It underscores that integrating clinical characteristics with laboratory or imaging indicators and employing advanced techniques like multivariate regression or radiomics analysis significantly enhance the efficacy of prediction. Our research findings offer valuable insights that can guide future studies on prediction models for IVGC therapy in TED.</p>","PeriodicalId":12159,"journal":{"name":"European Thyroid Journal","volume":"13 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378126/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Thyroid Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/ETJ-24-0122","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Thyroid eye disease (TED) is an autoimmune orbital disease, with intravenous glucocorticoid (IVGC) therapy as the first-line treatment. Due to uncertain response rates and possible side effects, various prediction models have been developed to predict IVGC therapy outcomes.
Methods: A thorough search was conducted in PubMed, Embase, and Web of Science databases. Data extraction included publication details, prediction model content, and performance. Statistical analysis was performed using R software, including heterogeneity evaluation, publication bias, subgroup analysis, and sensitivity analysis. Forest plots were utilized for result visualization.
Results: Of the 12 eligible studies, 47 prediction models were extracted. All included studies exhibited a low-to-moderate risk of bias. The pooled area under the receiver operating characteristic curve (AUC) and the combined sensitivity and specificity for the models were 0.81, 0.75, and 0.79, respectively. In view of heterogeneity, multiple meta-regression and subgroup analysis were conducted, which showed that marker and modeling types may be the possible causes of heterogeneity (P < 0.001). Notably, imaging metrics alone (AUC = 0.81) or clinical characteristics combined with other markers (AUC = 0.87), incorporating with multivariate regression (AUC = 0.84) or radiomics analysis (AUC = 0.91), yielded robust and reliable prediction outcomes.
Conclusion: This meta-analysis comprehensively reviews the predictive models for IVGC therapy response in TED. It underscores that integrating clinical characteristics with laboratory or imaging indicators and employing advanced techniques like multivariate regression or radiomics analysis significantly enhance the efficacy of prediction. Our research findings offer valuable insights that can guide future studies on prediction models for IVGC therapy in TED.
期刊介绍:
The ''European Thyroid Journal'' publishes papers reporting original research in basic, translational and clinical thyroidology. Original contributions cover all aspects of the field, from molecular and cellular biology to immunology and biochemistry, from physiology to pathology, and from pediatric to adult thyroid diseases with a special focus on thyroid cancer. Readers also benefit from reviews by noted experts, which highlight especially active areas of current research. The journal will further publish formal guidelines in the field, produced and endorsed by the European Thyroid Association.