Zhizhong Shen , Zixian Liu , Meng Li , Lu Han , Jianming Wang , Xunwei Wu , Shengbo Sang
{"title":"Effects of TET2-mediated methylation reconstruction on A2058 melanoma cell sensitivity to matrix stiffness in a 3D culture system","authors":"Zhizhong Shen , Zixian Liu , Meng Li , Lu Han , Jianming Wang , Xunwei Wu , Shengbo Sang","doi":"10.1016/j.yexcr.2024.114224","DOIUrl":null,"url":null,"abstract":"<div><p>Matrix stiffness is a crucial factor in the tumor microenvironment, impacting tumor progression and development. TET2 is vital for epigenetic regulation in melanoma and is significantly reduced in advanced melanomas compared with nevi and thin melanomas. However, it is unclear how TET2 mediates the effect of matrix stiffness on melanoma cells. This study utilized A2058 cell lines and prepared different stiffness collagen hydrogels to evaluate TET2 overexpression (TET2OE) and mutant (TET2M) melanoma cells' activity, proliferation, and invasion. A2058 melanoma cells' viability and invasion decreased with increased matrix stiffness, with TET2OE cells experiencing a more significant impact than TET2M cells. Methylation analysis revealed that TET2 determines gene methylation levels, influencing cell-ECM interactions. Transcriptome analysis confirmed that TET2 promotes matrix stiffness's effect on melanoma cell fate. This research provides promising directions and opportunities for melanoma treatment.</p></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"442 1","pages":"Article 114224"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001448272400315X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Matrix stiffness is a crucial factor in the tumor microenvironment, impacting tumor progression and development. TET2 is vital for epigenetic regulation in melanoma and is significantly reduced in advanced melanomas compared with nevi and thin melanomas. However, it is unclear how TET2 mediates the effect of matrix stiffness on melanoma cells. This study utilized A2058 cell lines and prepared different stiffness collagen hydrogels to evaluate TET2 overexpression (TET2OE) and mutant (TET2M) melanoma cells' activity, proliferation, and invasion. A2058 melanoma cells' viability and invasion decreased with increased matrix stiffness, with TET2OE cells experiencing a more significant impact than TET2M cells. Methylation analysis revealed that TET2 determines gene methylation levels, influencing cell-ECM interactions. Transcriptome analysis confirmed that TET2 promotes matrix stiffness's effect on melanoma cell fate. This research provides promising directions and opportunities for melanoma treatment.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.