Sensitive and Enzyme-Free Pseudomonas aeruginosa Detection and Isolation via DNAzyme Cascade Triggered DNA Tweezer.

IF 2.5 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of microbiology and biotechnology Pub Date : 2024-09-28 Epub Date: 2024-08-09 DOI:10.4014/jmb.2407.07006
Furong Liu, Jingyuan Xu, Lihua Yang
{"title":"Sensitive and Enzyme-Free <i>Pseudomonas aeruginosa</i> Detection and Isolation via DNAzyme Cascade Triggered DNA Tweezer.","authors":"Furong Liu, Jingyuan Xu, Lihua Yang","doi":"10.4014/jmb.2407.07006","DOIUrl":null,"url":null,"abstract":"<p><p>Effective isolation and sensitive detection of <i>Pseudomonas aeruginosa</i> (<i>P. aeruginosa</i>) is crucial for the early diagnosis and prognosis of various diseases, such as urinary tract infections. However, efficient isolation and simultaneous detection of <i>P. aeruginosa</i> remains a huge challenge. Herein, we depict a novel fluorescence assay for sensitive, enzyme-free detection of <i>P. aeruginosa</i> by integrating DNAzyme cascade-induced DNA tweezers and magnetic nanoparticles (MNPs)-based separation. The capture probe@MNPs is capable of accurately identifying target bacteria and transporting the bacteria signal to nucleic acid signals. Based on the DNAzyme cascade-induced DNA tweezers, the nucleic acid signals are extensively amplified, endowing the method with a high sensitivity and a low detection limit of 1 cfu/mL. In addition, the method also exhibits a wide detection of six orders of magnitudes. The proposed method could be extended to other bacteria detection by simply changing the aptamer sequence. Taking the merit of the high sensitivity, greatly minimized detection time (less than 1.5 h), enzyme-free characteristics, and stability, the proposed method could be potentially applied to diagnosing and preventing diseases caused by pathogenic bacteria.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 9","pages":"1919-1925"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473567/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2407.07006","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Effective isolation and sensitive detection of Pseudomonas aeruginosa (P. aeruginosa) is crucial for the early diagnosis and prognosis of various diseases, such as urinary tract infections. However, efficient isolation and simultaneous detection of P. aeruginosa remains a huge challenge. Herein, we depict a novel fluorescence assay for sensitive, enzyme-free detection of P. aeruginosa by integrating DNAzyme cascade-induced DNA tweezers and magnetic nanoparticles (MNPs)-based separation. The capture probe@MNPs is capable of accurately identifying target bacteria and transporting the bacteria signal to nucleic acid signals. Based on the DNAzyme cascade-induced DNA tweezers, the nucleic acid signals are extensively amplified, endowing the method with a high sensitivity and a low detection limit of 1 cfu/mL. In addition, the method also exhibits a wide detection of six orders of magnitudes. The proposed method could be extended to other bacteria detection by simply changing the aptamer sequence. Taking the merit of the high sensitivity, greatly minimized detection time (less than 1.5 h), enzyme-free characteristics, and stability, the proposed method could be potentially applied to diagnosing and preventing diseases caused by pathogenic bacteria.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 DNA 酶级联触发 DNA 镊子灵敏、无酶地检测和分离铜绿假单胞菌。
有效分离和灵敏检测铜绿假单胞菌(P. aeruginosa)对于尿路感染等各种疾病的早期诊断和预后至关重要。然而,高效分离和同时检测铜绿假单胞菌仍然是一项巨大的挑战。在本文中,我们描述了一种新型荧光检测方法,通过整合 DNA 酶级联诱导的 DNA 镊子和基于磁性纳米颗粒(MNPs)的分离,实现对铜绿假单胞菌的灵敏、无酶检测。捕获探针@MNPs能够准确识别目标细菌,并将细菌信号转移到核酸信号上。基于 DNA 酶级联诱导的 DNA 镊子,核酸信号被广泛放大,从而使该方法具有高灵敏度和 1 cfu/mL 的低检测限。此外,该方法的检测范围也达到了六个数量级。只需改变适配体序列,该方法就能扩展到其他细菌的检测。该方法具有灵敏度高、检测时间大大缩短(小于 1.5 小时)、无酶、稳定等优点,有望应用于诊断和预防由致病菌引起的疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of microbiology and biotechnology
Journal of microbiology and biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
5.50
自引率
3.60%
发文量
151
审稿时长
2 months
期刊介绍: The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.
期刊最新文献
Inhibition of Melanin Synthesis and Inflammation by Exosomes Derived from Leuconostoc mesenteroides DB-14 Isolated from Camellia japonica Flower. Kjellmaniella crassifolia Reduces Lipopolysaccharide-Induced Inflammation in Caco-2 Cells and Ameliorates Loperamide-Induced Constipation in Mice. Melissa officinalis Regulates Lipopolysaccharide-Induced BV2 Microglial Activation via MAPK and Nrf2 Signaling. Development of a New Isoxsuprine Hydrochloride-Based Hydroxylated Compound with Potent Antioxidant and Anti-Inflammatory Activities. Effects of Kimchi-Derived Lactic Acid Bacteria on Reducing Biological Hazards in Kimchi.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1