Yanglei Cheng, Liping Lin, Weifeng Hou, Huaqiong Qiu, Chengfen Deng, Zi Yan, Long Qian, Wei Cui, Yanbing Li, Zhiyun Yang, Qiuli Chen, Shu Su
{"title":"Altered individual-level morphological similarity network in children with growth hormone deficiency.","authors":"Yanglei Cheng, Liping Lin, Weifeng Hou, Huaqiong Qiu, Chengfen Deng, Zi Yan, Long Qian, Wei Cui, Yanbing Li, Zhiyun Yang, Qiuli Chen, Shu Su","doi":"10.1186/s11689-024-09566-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accumulating evidences indicate regional grey matter (GM) morphology alterations in pediatric growth hormone deficiency (GHD); however, large-scale morphological brain networks (MBNs) undergo these patients remains unclear.</p><p><strong>Objective: </strong>To investigate the topological organization of individual-level MBNs in pediatric GHD.</p><p><strong>Methods: </strong>Sixty-one GHD and 42 typically developing controls (TDs) were enrolled. Inter-regional morphological similarity of GM was taken to construct individual-level MBNs. Between-group differences of topological parameters and network-based statistics analysis were compared. Finally, association relationship between network properties and clinical variables was analyzed.</p><p><strong>Results: </strong>Compared to TDs, GHD indicated a disturbance in the normal small-world organization, reflected by increased L<sub>p</sub>, γ, λ, σ and decreased C<sub>p</sub>, E<sub>glob</sub> (all P<sub>FDR</sub> < 0.017). Regarding nodal properties, GHD exhibited increased nodal profiles at cerebellum 4-5, central executive network-related left inferior frontal gyrus, limbic regions-related right posterior cingulate gyrus, left hippocampus, and bilateral pallidum, thalamus (all P<sub>FDR</sub> < 0.05). Meanwhile, GHD exhibited decreased nodal profiles at sensorimotor network -related bilateral paracentral lobule, default-mode network-related left superior frontal gyrus, visual network -related right lingual gyrus, auditory network-related right superior temporal gyrus and bilateral amygdala, right cerebellum 3, bilateral cerebellum 10, vermis 1-2, 3, 4-5, 6 (all P<sub>FDR</sub> < 0.05). Furthermore, serum markers and behavior scores in GHD group were correlated with altered nodal profiles (P ≤ 0.046, uncorrected).</p><p><strong>Conclusion: </strong>GHD undergo an extensive reorganization in large-scale individual-level MBNs, probably due to abnormal cortico-striatal-thalamo-cerebellum loops, cortico-limbic-cerebellum, dorsal visual-sensorimotor-striatal, and auditory-cerebellum circuitry. This study highlights the crucial role of abnormal morphological connectivity underlying GHD, which might result in their relatively slower development in motor, cognitive, and linguistic functional within behavior problem performance.</p>","PeriodicalId":16530,"journal":{"name":"Journal of Neurodevelopmental Disorders","volume":"16 1","pages":"48"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346214/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurodevelopmental Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s11689-024-09566-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Accumulating evidences indicate regional grey matter (GM) morphology alterations in pediatric growth hormone deficiency (GHD); however, large-scale morphological brain networks (MBNs) undergo these patients remains unclear.
Objective: To investigate the topological organization of individual-level MBNs in pediatric GHD.
Methods: Sixty-one GHD and 42 typically developing controls (TDs) were enrolled. Inter-regional morphological similarity of GM was taken to construct individual-level MBNs. Between-group differences of topological parameters and network-based statistics analysis were compared. Finally, association relationship between network properties and clinical variables was analyzed.
Results: Compared to TDs, GHD indicated a disturbance in the normal small-world organization, reflected by increased Lp, γ, λ, σ and decreased Cp, Eglob (all PFDR < 0.017). Regarding nodal properties, GHD exhibited increased nodal profiles at cerebellum 4-5, central executive network-related left inferior frontal gyrus, limbic regions-related right posterior cingulate gyrus, left hippocampus, and bilateral pallidum, thalamus (all PFDR < 0.05). Meanwhile, GHD exhibited decreased nodal profiles at sensorimotor network -related bilateral paracentral lobule, default-mode network-related left superior frontal gyrus, visual network -related right lingual gyrus, auditory network-related right superior temporal gyrus and bilateral amygdala, right cerebellum 3, bilateral cerebellum 10, vermis 1-2, 3, 4-5, 6 (all PFDR < 0.05). Furthermore, serum markers and behavior scores in GHD group were correlated with altered nodal profiles (P ≤ 0.046, uncorrected).
Conclusion: GHD undergo an extensive reorganization in large-scale individual-level MBNs, probably due to abnormal cortico-striatal-thalamo-cerebellum loops, cortico-limbic-cerebellum, dorsal visual-sensorimotor-striatal, and auditory-cerebellum circuitry. This study highlights the crucial role of abnormal morphological connectivity underlying GHD, which might result in their relatively slower development in motor, cognitive, and linguistic functional within behavior problem performance.
期刊介绍:
Journal of Neurodevelopmental Disorders is an open access journal that integrates current, cutting-edge research across a number of disciplines, including neurobiology, genetics, cognitive neuroscience, psychiatry and psychology. The journal’s primary focus is on the pathogenesis of neurodevelopmental disorders including autism, fragile X syndrome, tuberous sclerosis, Turner Syndrome, 22q Deletion Syndrome, Prader-Willi and Angelman Syndrome, Williams syndrome, lysosomal storage diseases, dyslexia, specific language impairment and fetal alcohol syndrome. With the discovery of specific genes underlying neurodevelopmental syndromes, the emergence of powerful tools for studying neural circuitry, and the development of new approaches for exploring molecular mechanisms, interdisciplinary research on the pathogenesis of neurodevelopmental disorders is now increasingly common. Journal of Neurodevelopmental Disorders provides a unique venue for researchers interested in comparing and contrasting mechanisms and characteristics related to the pathogenesis of the full range of neurodevelopmental disorders, sharpening our understanding of the etiology and relevant phenotypes of each condition.