Exploration of the potential mechanism of aqueous extract of Artemisia capillaris for the treatment of non-alcoholic fatty liver disease based on network pharmacology and experimental verification.

IF 2.8 4区 医学 Q2 PHARMACOLOGY & PHARMACY Journal of Pharmacy and Pharmacology Pub Date : 2024-08-26 DOI:10.1093/jpp/rgae061
Meng Liang, Siyu Dong, Yi Guo, Yuyi Zhang, Xiao Xiao, Jun Ma, Xiaowen Jiang, Wenhui Yu
{"title":"Exploration of the potential mechanism of aqueous extract of Artemisia capillaris for the treatment of non-alcoholic fatty liver disease based on network pharmacology and experimental verification.","authors":"Meng Liang, Siyu Dong, Yi Guo, Yuyi Zhang, Xiao Xiao, Jun Ma, Xiaowen Jiang, Wenhui Yu","doi":"10.1093/jpp/rgae061","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Non-alcoholic fatty liver disease (NAFLD) is a nutritional and metabolic disease with a high prevalence today. Artemisia capillaris has anti-inflammatory, antioxidant, and other effects. However, the mechanism of A. capillaris in treating NAFLD is still poorly understood.</p><p><strong>Methods: </strong>This study explored the mechanism of A. capillaris in the treatment of NAFLD through network pharmacology and molecular docking, and verified the results through in vivo experiments using a high-fat diet-induced mouse model and in vitro experiments using an oleic acid-induced HepG2 cell model.</p><p><strong>Key findings: </strong>Aqueous extract of A. capillaris (AEAC) can reduce blood lipids, reduce liver lipid accumulation and liver inflammation in NAFLD mice, and improve NAFLD. Network pharmacology analysis revealed that 51 drug ingredients in A. capillaris correspond to 370 targets that act on NAFLD. GEO data mining obtained 93 liver differentially expressed genes related to NAFLD. In the UHPLC-MS detection results, 36 components were characterized and molecular docked with JNK. Verified in vitro and in vivo, the results show that JNK and the phosphorylation levels of IL-6, IL-1β, c-Jun, c-Fos, and CCL2 are key targets and pathways.</p><p><strong>Conclusions: </strong>This study confirmed that AEAC reduces lipid accumulation and inflammation in the liver of NAFLD mice by inhibiting the JNK/AP-1 pathway.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacy and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jpp/rgae061","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Non-alcoholic fatty liver disease (NAFLD) is a nutritional and metabolic disease with a high prevalence today. Artemisia capillaris has anti-inflammatory, antioxidant, and other effects. However, the mechanism of A. capillaris in treating NAFLD is still poorly understood.

Methods: This study explored the mechanism of A. capillaris in the treatment of NAFLD through network pharmacology and molecular docking, and verified the results through in vivo experiments using a high-fat diet-induced mouse model and in vitro experiments using an oleic acid-induced HepG2 cell model.

Key findings: Aqueous extract of A. capillaris (AEAC) can reduce blood lipids, reduce liver lipid accumulation and liver inflammation in NAFLD mice, and improve NAFLD. Network pharmacology analysis revealed that 51 drug ingredients in A. capillaris correspond to 370 targets that act on NAFLD. GEO data mining obtained 93 liver differentially expressed genes related to NAFLD. In the UHPLC-MS detection results, 36 components were characterized and molecular docked with JNK. Verified in vitro and in vivo, the results show that JNK and the phosphorylation levels of IL-6, IL-1β, c-Jun, c-Fos, and CCL2 are key targets and pathways.

Conclusions: This study confirmed that AEAC reduces lipid accumulation and inflammation in the liver of NAFLD mice by inhibiting the JNK/AP-1 pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于网络药理学和实验验证的茵陈蒿水提取物治疗非酒精性脂肪肝的潜在机制探讨
目的:非酒精性脂肪肝(NAFLD)是一种营养和代谢疾病,目前发病率很高。茵陈蒿具有抗炎、抗氧化等功效。然而,人们对茵陈蒿治疗非酒精性脂肪肝的机制仍知之甚少:本研究通过网络药理学和分子对接研究探讨了A. capillaris治疗非酒精性脂肪肝的机制,并通过高脂饮食诱导的小鼠模型体内实验和油酸诱导的HepG2细胞模型体外实验验证了研究结果:毛果芸香科植物毛果芸香的水提取物(AEAC)可以降低非酒精性脂肪肝小鼠的血脂,减少肝脏脂质堆积和肝脏炎症,改善非酒精性脂肪肝。网络药理学分析发现,毛果芸香中的51种药物成分对应370个作用于非酒精性脂肪肝的靶点。GEO数据挖掘获得了93个与非酒精性脂肪肝相关的肝脏差异表达基因。在超高效液相色谱-质谱(UHPLC-MS)检测结果中,36种成分被鉴定并与JNK进行了分子对接。体外和体内验证结果表明,JNK以及IL-6、IL-1β、c-Jun、c-Fos和CCL2的磷酸化水平是关键靶点和途径:本研究证实,AEAC可通过抑制JNK/AP-1通路减少非酒精性脂肪肝小鼠肝脏的脂质蓄积和炎症反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
91
审稿时长
3 months
期刊介绍: JPP keeps pace with new research on how drug action may be optimized by new technologies, and attention is given to understanding and improving drug interactions in the body. At the same time, the journal maintains its established and well-respected core strengths in areas such as pharmaceutics and drug delivery, experimental and clinical pharmacology, biopharmaceutics and drug disposition, and drugs from natural sources. JPP publishes at least one special issue on a topical theme each year.
期刊最新文献
Targeting the PI3K/AKT signaling pathway with PNU120596 protects against LPS-induced acute lung injury Pharmacokinetics of nano- and microcrystal formulations of low solubility compounds after intramuscular injection to mice Homoharringtonine promotes non-small-cell lung cancer cell death via modulating HIF-1α/ERβ/E2F1 feedforward loop Deciphering the mechanism of Chaihu Shugan San in the treatment of nonalcoholic steatohepatitis using network pharmacology and molecular docking Genistein and daidzein induce ferroptosis in MDA-MB-231 cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1