Quantitative analysis of selected alkaloids of Mitragyna speciosa using 1H quantitative nuclear magnetic resonance spectroscopy

IF 1.9 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Magnetic Resonance in Chemistry Pub Date : 2024-08-27 DOI:10.1002/mrc.5477
Suleiman Abubakar Garba, Khozirah Shaari, Mohd Rashidi Abdul Manap, Soo Yee Lee, Isah Abdulazeez, Siti Munirah Mohd Faudzi
{"title":"Quantitative analysis of selected alkaloids of Mitragyna speciosa using 1H quantitative nuclear magnetic resonance spectroscopy","authors":"Suleiman Abubakar Garba,&nbsp;Khozirah Shaari,&nbsp;Mohd Rashidi Abdul Manap,&nbsp;Soo Yee Lee,&nbsp;Isah Abdulazeez,&nbsp;Siti Munirah Mohd Faudzi","doi":"10.1002/mrc.5477","DOIUrl":null,"url":null,"abstract":"<p><i>Mitragyna speciosa</i> is a perennial plant native to Asia, well known for its psychoactive properties. Its major alkaloid mitragynine is known to have sedative and euphoric effects. Hence, the plant has been a subject of abuse, leading to addiction, necessitating efficient analytical methods to detect its psychoactive constituents. However, current chromatography-based methods for detecting the alkaloids are time consuming and costly. Quantitative nuclear magnetic resonance (qNMR) spectroscopy emerges as a promising alternative due to its nondestructive nature, structural insights, and short analysis time. Hence, a rapid and precise qNMR method was developed to quantify selected major psychoactive alkaloids in various parts of <i>M. speciosa</i>. Mitragynine, specioliatine, and speciogynine were quantified in relation to the integral value of the -OCH<sub>3</sub> groups of the alkaloids and the internal standard 1,4-dinitrobenzene. The precision and reproducibility of the method gave a relative standard deviation (RSD) of 2%, demonstrating the reliability of the method. In addition, the method showed excellent specificity, sensitivity, high linearity range (<i>R</i><sup>2</sup> = 0.999), and limits of detection (LOD) and quantification (LOQ) values. The analysis revealed that the red-veined <i>M. speciosa</i> leaves contained higher levels of mitragynine (32.34 mg/g), specioliatine (16.84 mg/g) and speciogynine (7.69 mg/g) compared to the green-veined leaves, stem bark, or fruits.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mrc.5477","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitragyna speciosa is a perennial plant native to Asia, well known for its psychoactive properties. Its major alkaloid mitragynine is known to have sedative and euphoric effects. Hence, the plant has been a subject of abuse, leading to addiction, necessitating efficient analytical methods to detect its psychoactive constituents. However, current chromatography-based methods for detecting the alkaloids are time consuming and costly. Quantitative nuclear magnetic resonance (qNMR) spectroscopy emerges as a promising alternative due to its nondestructive nature, structural insights, and short analysis time. Hence, a rapid and precise qNMR method was developed to quantify selected major psychoactive alkaloids in various parts of M. speciosa. Mitragynine, specioliatine, and speciogynine were quantified in relation to the integral value of the -OCH3 groups of the alkaloids and the internal standard 1,4-dinitrobenzene. The precision and reproducibility of the method gave a relative standard deviation (RSD) of 2%, demonstrating the reliability of the method. In addition, the method showed excellent specificity, sensitivity, high linearity range (R2 = 0.999), and limits of detection (LOD) and quantification (LOQ) values. The analysis revealed that the red-veined M. speciosa leaves contained higher levels of mitragynine (32.34 mg/g), specioliatine (16.84 mg/g) and speciogynine (7.69 mg/g) compared to the green-veined leaves, stem bark, or fruits.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 1H 定量核磁共振光谱定量分析 Mitragyna speciosa 的某些生物碱。
Mitragyna speciosa 是一种多年生植物,原产于亚洲,因其精神活性特性而闻名。众所周知,它的主要生物碱丝裂炔具有镇静和兴奋作用。因此,这种植物一直被滥用,导致成瘾,这就需要高效的分析方法来检测其精神活性成分。然而,目前基于色谱法检测生物碱的方法既耗时又昂贵。定量核磁共振(qNMR)光谱法因其无损性、结构洞察力和分析时间短而成为一种有前途的替代方法。因此,我们开发了一种快速、精确的 qNMR 方法,用于定量分析 M. speciosa 不同部位中选定的主要精神活性生物碱。根据生物碱的 -OCH3 基团与内标 1,4-二硝基苯的积分值,定量分析了米拉京碱、斯皮奥利廷碱和斯皮奥利廷碱。该方法的精密度和重现性良好,相对标准偏差(RSD)为 2%,证明了该方法的可靠性。此外,该方法的特异性、灵敏度、线性范围(R2 = 0.999)、检出限(LOD)和定量限(LOQ)均表现优异。分析结果表明,与绿脉叶片、茎皮或果实相比,红脉M. speciosa叶片中的mitragynine(32.34 mg/g)、specioliatine(16.84 mg/g)和speciogynine(7.69 mg/g)含量较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
10.00%
发文量
99
审稿时长
1 months
期刊介绍: MRC is devoted to the rapid publication of papers which are concerned with the development of magnetic resonance techniques, or in which the application of such techniques plays a pivotal part. Contributions from scientists working in all areas of NMR, ESR and NQR are invited, and papers describing applications in all branches of chemistry, structural biology and materials chemistry are published. The journal is of particular interest not only to scientists working in academic research, but also those working in commercial organisations who need to keep up-to-date with the latest practical applications of magnetic resonance techniques.
期刊最新文献
HRMAS NMR for Studying Solvent-Induced Mobility of Polymer Chains and Metallocene Migration Into Low-Density Polyethylene (LDPE). Structural Elucidation and Complete NMR Spectral Assignments of Monascus Monacolin Analogs. Issue Information Reversibly Compressible Cross-Linked Polystyrene Gels, Compatible With Toluene-d8 and Pyridine-d5, for Measurement of Residual Dipolar Couplings and Residual Chemical Shift Anisotropies. A New qNMR Compliant Savitzky-Golay Apodization Function for Resolution Enhancement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1