Karel Kopejtka, Jürgen Tomasch, Sahana Shivaramu, Mohit Kumar Saini, David Kaftan, Michal Koblížek
{"title":"Minimal transcriptional regulation of horizontally transferred photosynthesis genes in phototrophic bacterium <i>Gemmatimonas phototrophica</i>.","authors":"Karel Kopejtka, Jürgen Tomasch, Sahana Shivaramu, Mohit Kumar Saini, David Kaftan, Michal Koblížek","doi":"10.1128/msystems.00706-24","DOIUrl":null,"url":null,"abstract":"<p><p>The first phototrophic member of the bacterial phylum <i>Gemmatimonadota</i>, <i>Gemmatimonas phototrophica</i> AP64<sup>T</sup>, received all its photosynthesis genes via distant horizontal gene transfer from a purple bacterium. Here, we investigated how these acquired genes, which are tightly controlled by oxygen and light in the ancestor, are integrated into the regulatory system of its new host. <i>G. phototrophica</i> grew well under aerobic and semiaerobic conditions, with almost no difference in gene expression. Under aerobic conditions, the growth of <i>G. phototrophica</i> was optimal at 80 µmol photon m<sup>-2</sup> s<sup>-1</sup>, while higher light intensities had an inhibitory effect. The transcriptome showed only a minimal response to the dark-light shift at optimal light intensity, while the exposure to a higher light intensity (200 µmol photon m<sup>-2</sup> s<sup>-1</sup>) induced already stronger but still transient changes in gene expression. Interestingly, a singlet oxygen defense was not activated under any conditions tested. Our results indicate that <i>G. phototrophica</i> possesses neither the oxygen-dependent repression of photosynthesis genes known from purple bacteria nor the light-dependent repression described in aerobic anoxygenic phototrophs. Instead, <i>G. phototrophica</i> has evolved as a low-light species preferring reduced oxygen concentrations. Under these conditions, the bacterium can safely employ its photoheterotrophic metabolism without the need for complex regulatory mechanisms.</p><p><strong>Importance: </strong>Horizontal gene transfer is one of the main mechanisms by which bacteria acquire new genes. However, it represents only the first step as the transferred genes have also to be functionally and regulatory integrated into the recipient's cellular machinery. <i>Gemmatimonas phototrophica</i>, a member of bacterial phylum Gemmatimonadota, acquired its photosynthesis genes via distant horizontal gene transfer from a purple bacterium. Thus, it represents a unique natural experiment, in which the entire package of photosynthesis genes was transplanted into a distant host. We show that <i>G. phototrophica</i> lacks the regulation of photosynthesis gene expressions in response to oxygen concentration and light intensity that are common in purple bacteria. This restricts its growth to low-light habitats with reduced oxygen. Understanding the regulation of horizontally transferred genes is important not only for microbial evolution but also for synthetic biology and the engineering of novel organisms, as these rely on the successful integration of foreign genes.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":" ","pages":"e0070624"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406998/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSystems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msystems.00706-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The first phototrophic member of the bacterial phylum Gemmatimonadota, Gemmatimonas phototrophica AP64T, received all its photosynthesis genes via distant horizontal gene transfer from a purple bacterium. Here, we investigated how these acquired genes, which are tightly controlled by oxygen and light in the ancestor, are integrated into the regulatory system of its new host. G. phototrophica grew well under aerobic and semiaerobic conditions, with almost no difference in gene expression. Under aerobic conditions, the growth of G. phototrophica was optimal at 80 µmol photon m-2 s-1, while higher light intensities had an inhibitory effect. The transcriptome showed only a minimal response to the dark-light shift at optimal light intensity, while the exposure to a higher light intensity (200 µmol photon m-2 s-1) induced already stronger but still transient changes in gene expression. Interestingly, a singlet oxygen defense was not activated under any conditions tested. Our results indicate that G. phototrophica possesses neither the oxygen-dependent repression of photosynthesis genes known from purple bacteria nor the light-dependent repression described in aerobic anoxygenic phototrophs. Instead, G. phototrophica has evolved as a low-light species preferring reduced oxygen concentrations. Under these conditions, the bacterium can safely employ its photoheterotrophic metabolism without the need for complex regulatory mechanisms.
Importance: Horizontal gene transfer is one of the main mechanisms by which bacteria acquire new genes. However, it represents only the first step as the transferred genes have also to be functionally and regulatory integrated into the recipient's cellular machinery. Gemmatimonas phototrophica, a member of bacterial phylum Gemmatimonadota, acquired its photosynthesis genes via distant horizontal gene transfer from a purple bacterium. Thus, it represents a unique natural experiment, in which the entire package of photosynthesis genes was transplanted into a distant host. We show that G. phototrophica lacks the regulation of photosynthesis gene expressions in response to oxygen concentration and light intensity that are common in purple bacteria. This restricts its growth to low-light habitats with reduced oxygen. Understanding the regulation of horizontally transferred genes is important not only for microbial evolution but also for synthetic biology and the engineering of novel organisms, as these rely on the successful integration of foreign genes.
mSystemsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
10.50
自引率
3.10%
发文量
308
审稿时长
13 weeks
期刊介绍:
mSystems™ will publish preeminent work that stems from applying technologies for high-throughput analyses to achieve insights into the metabolic and regulatory systems at the scale of both the single cell and microbial communities. The scope of mSystems™ encompasses all important biological and biochemical findings drawn from analyses of large data sets, as well as new computational approaches for deriving these insights. mSystems™ will welcome submissions from researchers who focus on the microbiome, genomics, metagenomics, transcriptomics, metabolomics, proteomics, glycomics, bioinformatics, and computational microbiology. mSystems™ will provide streamlined decisions, while carrying on ASM''s tradition of rigorous peer review.