Rodrigo F Alves, Célia Lopes, Eduardo Rocha, Tânia Vieira Madureira
{"title":"Estrogenic Responsiveness of Brown Trout Primary Hepatocyte Spheroids to Environmental Levels of 17α-Ethinylestradiol.","authors":"Rodrigo F Alves, Célia Lopes, Eduardo Rocha, Tânia Vieira Madureira","doi":"10.3390/jox14030060","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) fish hepatocyte cultures are promising alternative models for replicating in vivo data. Few studies have attempted to characterise the structure and function of fish 3D liver models and illustrate their applicability. This study aimed to further characterise a previously established spheroid model obtained from juvenile brown trout (<i>Salmo trutta</i>) primary hepatocytes under estrogenic stimulation. The spheroids were exposed for six days to environmentally relevant concentrations of 17α-ethinylestradiol-EE2 (1-100 ng/L). The mRNA levels of peroxisome (<i>catalase-Cat</i> and <i>urate oxidase-Uox</i>), lipid metabolism (<i>acyl-CoA long chain synthetase 1-Acsl1</i>, <i>apolipoprotein AI-ApoAI</i>, and <i>fatty acid binding protein 1-Fabp1</i>), and estrogen-related (<i>estrogen receptor α-ERα</i>, <i>estrogen receptor β-ERβ</i>, <i>vitellogenin A-VtgA</i>, <i>zona pellucida glycoprotein 2.5-ZP2.5</i>, and <i>zona pellucida glycoprotein 3a.2-ZP3a.2</i>) target genes were evaluated by quantitative real-time polymerase chain reaction. Immunohistochemistry was used to assess Vtg and ZP protein expressions. At the highest EE2 concentration, <i>VtgA</i> and <i>ZP2.5</i> genes were significantly upregulated. The remaining target genes were not significantly altered by EE2. Vtg and ZP immunostaining was consistently increased in spheroids exposed to 50 and 100 ng/L of EE2, whereas lower EE2 levels resulted in a weaker signal. EE2 did not induce significant changes in the spheroids' viability and morphological parameters. This study identified EE2 effects at environmentally relevant doses in trout liver spheroids, indicating its usefulness as a proxy for in vivo impacts of xenoestrogens.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 3","pages":"1064-1078"},"PeriodicalIF":6.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348032/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox14030060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional (3D) fish hepatocyte cultures are promising alternative models for replicating in vivo data. Few studies have attempted to characterise the structure and function of fish 3D liver models and illustrate their applicability. This study aimed to further characterise a previously established spheroid model obtained from juvenile brown trout (Salmo trutta) primary hepatocytes under estrogenic stimulation. The spheroids were exposed for six days to environmentally relevant concentrations of 17α-ethinylestradiol-EE2 (1-100 ng/L). The mRNA levels of peroxisome (catalase-Cat and urate oxidase-Uox), lipid metabolism (acyl-CoA long chain synthetase 1-Acsl1, apolipoprotein AI-ApoAI, and fatty acid binding protein 1-Fabp1), and estrogen-related (estrogen receptor α-ERα, estrogen receptor β-ERβ, vitellogenin A-VtgA, zona pellucida glycoprotein 2.5-ZP2.5, and zona pellucida glycoprotein 3a.2-ZP3a.2) target genes were evaluated by quantitative real-time polymerase chain reaction. Immunohistochemistry was used to assess Vtg and ZP protein expressions. At the highest EE2 concentration, VtgA and ZP2.5 genes were significantly upregulated. The remaining target genes were not significantly altered by EE2. Vtg and ZP immunostaining was consistently increased in spheroids exposed to 50 and 100 ng/L of EE2, whereas lower EE2 levels resulted in a weaker signal. EE2 did not induce significant changes in the spheroids' viability and morphological parameters. This study identified EE2 effects at environmentally relevant doses in trout liver spheroids, indicating its usefulness as a proxy for in vivo impacts of xenoestrogens.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.