Pitfalls in time-to-event analysis of registry data: a tutorial based on simulated and real cases.

Frontiers in epidemiology Pub Date : 2024-07-11 eCollection Date: 2024-01-01 DOI:10.3389/fepid.2024.1386922
Mickaël Alligon, Nizar Mahlaoui, Olivier Bouaziz
{"title":"Pitfalls in time-to-event analysis of registry data: a tutorial based on simulated and real cases.","authors":"Mickaël Alligon, Nizar Mahlaoui, Olivier Bouaziz","doi":"10.3389/fepid.2024.1386922","DOIUrl":null,"url":null,"abstract":"<p><p>Survival analysis (also referred to as time-to-event analysis) is the study of the time elapsed from a starting date to some event of interest. In practice, these analyses can be challenging and, if methodological errors are to be avoided, require the application of appropriate techniques. By using simulations and real-life data based on the French national registry of patients with primary immunodeficiencies (CEREDIH), we sought to highlight the basic elements that need to be handled correctly when performing the initial steps in a survival analysis. We focused on non-parametric methods to deal with right censoring, left truncation, competing risks, and recurrent events. Our simulations show that ignoring these aspects induces a bias in the results; we then explain how to analyze the data correctly in these situations using non-parametric methods. Rare disease registries are extremely valuable in medical research. We discuss the application of appropriate methods for the analysis of time-to-event from the CEREDIH registry. The objective of this tutorial article is to provide clinicians and healthcare professionals with better knowledge of the issues facing them when analyzing time-to-event data.</p>","PeriodicalId":73083,"journal":{"name":"Frontiers in epidemiology","volume":"4 ","pages":"1386922"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fepid.2024.1386922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Survival analysis (also referred to as time-to-event analysis) is the study of the time elapsed from a starting date to some event of interest. In practice, these analyses can be challenging and, if methodological errors are to be avoided, require the application of appropriate techniques. By using simulations and real-life data based on the French national registry of patients with primary immunodeficiencies (CEREDIH), we sought to highlight the basic elements that need to be handled correctly when performing the initial steps in a survival analysis. We focused on non-parametric methods to deal with right censoring, left truncation, competing risks, and recurrent events. Our simulations show that ignoring these aspects induces a bias in the results; we then explain how to analyze the data correctly in these situations using non-parametric methods. Rare disease registries are extremely valuable in medical research. We discuss the application of appropriate methods for the analysis of time-to-event from the CEREDIH registry. The objective of this tutorial article is to provide clinicians and healthcare professionals with better knowledge of the issues facing them when analyzing time-to-event data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
登记数据时间到事件分析中的陷阱:基于模拟和真实案例的教程。
生存分析(也称时间到事件分析)是对从某一起始日期到某些相关事件所经过的时间进行研究。在实践中,这些分析可能具有挑战性,如果要避免方法上的错误,就需要应用适当的技术。通过使用基于法国国家原发性免疫缺陷患者登记处(CEREDIH)的模拟和真实数据,我们试图强调在进行生存分析的初始步骤时需要正确处理的基本要素。我们重点研究了处理右删减、左截断、竞争风险和复发事件的非参数方法。我们的模拟结果表明,忽略这些方面会导致结果出现偏差;然后我们解释了如何在这些情况下使用非参数方法正确分析数据。罕见病登记在医学研究中极具价值。我们将讨论如何应用适当的方法来分析 CEREDIH 登记的事件时间。这篇教程文章的目的是让临床医生和医疗保健专业人员更好地了解他们在分析时间到事件数据时所面临的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The impact of cognitive bias about infectious diseases on social well-being. The spatio-temporal evolution of leishmaniasis in the province of Essaouira. Prevalence of chronic kidney disease and associated factors among adult diabetic patients: a hospital-based cross-sectional study. Using a computational cognitive model to simulate the effects of personal and social network experiences on seasonal influenza vaccination decisions. Prevalence of occupational injuries and associated factors among solid waste collectors in Jigjiga city, eastern Ethiopia: a cross-sectional study design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1