The promise of machine learning approaches to capture cellular senescence heterogeneity

IF 17 Q1 CELL BIOLOGY Nature aging Pub Date : 2024-08-26 DOI:10.1038/s43587-024-00703-2
Imanol Duran, Cleo L. Bishop, Jesús Gil, Ryan Wallis
{"title":"The promise of machine learning approaches to capture cellular senescence heterogeneity","authors":"Imanol Duran, Cleo L. Bishop, Jesús Gil, Ryan Wallis","doi":"10.1038/s43587-024-00703-2","DOIUrl":null,"url":null,"abstract":"The identification of senescent cells is a long-standing unresolved challenge, owing to their intrinsic heterogeneity and the lack of universal markers. In this Comment, we discuss the recent advent of machine-learning-based approaches to identifying senescent cells by using unbiased, multiparameter morphological assessments, and how these tools can assist future senescence research.","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":"4 9","pages":"1167-1170"},"PeriodicalIF":17.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43587-024-00703-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The identification of senescent cells is a long-standing unresolved challenge, owing to their intrinsic heterogeneity and the lack of universal markers. In this Comment, we discuss the recent advent of machine-learning-based approaches to identifying senescent cells by using unbiased, multiparameter morphological assessments, and how these tools can assist future senescence research.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习方法捕捉细胞衰老异质性的前景。
由于衰老细胞固有的异质性和缺乏通用标记,识别衰老细胞是一项长期悬而未决的挑战。在这篇评论中,我们将讨论最近出现的基于机器学习的方法,通过使用无偏见的多参数形态学评估来识别衰老细胞,以及这些工具如何帮助未来的衰老研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.70
自引率
0.00%
发文量
0
期刊最新文献
Cohort trends in intrinsic capacity in England and China. Genetics of female and male reproductive traits and their relationship with health, longevity and consequences for offspring Supporting the sexual healthcare needs of aging women Hallmarks of female reproductive aging in physiologic aging mice Healthy aging in individuals born after assisted reproductive technology is a research area for the future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1