Authorship style transfer with inverse transfer data augmentation

Zhonghui Shao , Jing Zhang , Haoyang Li , Xinmei Huang , Chao Zhou , Yuanchun Wang , Jibing Gong , Cuiping Li , Hong Chen
{"title":"Authorship style transfer with inverse transfer data augmentation","authors":"Zhonghui Shao ,&nbsp;Jing Zhang ,&nbsp;Haoyang Li ,&nbsp;Xinmei Huang ,&nbsp;Chao Zhou ,&nbsp;Yuanchun Wang ,&nbsp;Jibing Gong ,&nbsp;Cuiping Li ,&nbsp;Hong Chen","doi":"10.1016/j.aiopen.2024.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>Authorship style transfer aims to modify the style of neutral text to match the unique speaking or writing style of a particular individual. While Large Language Models (LLMs) present promising solutions, their effectiveness is limited by the small number of in-context learning demonstrations, particularly for authorship styles not frequently seen during pre-training. In response, this paper proposes an inverse transfer data augmentation (<span>ITDA</span>) method, leveraging LLMs to create (neutral text, stylized text) pairs. This method involves removing the existing styles from stylized texts, a process made more feasible due to the prevalence of neutral texts in pre-training. We use this augmented dataset to train a compact model that is efficient for deployment and adept at replicating the targeted style. Our experimental results, conducted across four datasets with distinct authorship styles, establish the effectiveness of <span>ITDA</span> over traditional style transfer methods and forward transfer using GPT-3.5. For further research and application, our dataset and code are openly accessible at <span><span>https://github.com/Vicky-Shao/ITDA</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"5 ","pages":"Pages 94-103"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666651024000135/pdfft?md5=3a5bc730b200d5992d33b797c1afbf4f&pid=1-s2.0-S2666651024000135-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666651024000135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Authorship style transfer aims to modify the style of neutral text to match the unique speaking or writing style of a particular individual. While Large Language Models (LLMs) present promising solutions, their effectiveness is limited by the small number of in-context learning demonstrations, particularly for authorship styles not frequently seen during pre-training. In response, this paper proposes an inverse transfer data augmentation (ITDA) method, leveraging LLMs to create (neutral text, stylized text) pairs. This method involves removing the existing styles from stylized texts, a process made more feasible due to the prevalence of neutral texts in pre-training. We use this augmented dataset to train a compact model that is efficient for deployment and adept at replicating the targeted style. Our experimental results, conducted across four datasets with distinct authorship styles, establish the effectiveness of ITDA over traditional style transfer methods and forward transfer using GPT-3.5. For further research and application, our dataset and code are openly accessible at https://github.com/Vicky-Shao/ITDA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作者风格转移与反向转移数据增强
作者风格转换的目的是修改中性文本的风格,使之与特定个人的独特说话或写作风格相匹配。虽然大语言模型(LLMs)提供了很有前景的解决方案,但由于语境中学习演示的数量较少,它们的有效性受到了限制,特别是对于在预训练中不常见的作者风格。为此,本文提出了一种反向传输数据增强(ITDA)方法,利用 LLM 创建(中性文本、风格化文本)对。该方法涉及从风格化文本中移除现有风格,由于中性文本在预训练中的普遍存在,这一过程变得更加可行。我们使用这个增强的数据集来训练一个紧凑的模型,该模型不仅部署高效,而且善于复制目标样式。我们在四个具有不同作者风格的数据集上进行的实验结果表明,ITDA 比传统的风格转移方法和使用 GPT-3.5 的前向转移方法更有效。为便于进一步研究和应用,我们的数据集和代码可在 https://github.com/Vicky-Shao/ITDA 上公开访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
期刊最新文献
GPT understands, too Adaptive negative representations for graph contrastive learning PM2.5 forecasting under distribution shift: A graph learning approach Enhancing neural network classification using fractional-order activation functions CPT: Colorful Prompt Tuning for pre-trained vision-language models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1