Stochastic symplectic reduced-order modeling for model-form uncertainty quantification in molecular dynamics simulations in various statistical ensembles
{"title":"Stochastic symplectic reduced-order modeling for model-form uncertainty quantification in molecular dynamics simulations in various statistical ensembles","authors":"","doi":"10.1016/j.cma.2024.117323","DOIUrl":null,"url":null,"abstract":"<div><p>This work focuses on the representation of model-form uncertainties in molecular dynamics simulations in various statistical ensembles. In prior contributions, the modeling of such uncertainties was formalized and applied to quantify the impact of, and the error generated by, pair-potential selection in the microcanonical ensemble (NVE). In this work, we extend this formulation and present a linear-subspace reduced-order model for the canonical (NVT) and isobaric (NPT) ensembles. The symplectic reduced-order basis is randomized on the tangent space of the Stiefel manifold to provide topological relationships and capture model-form uncertainty. Using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), we assess the relevance of these stochastic reduced-order atomistic models on canonical problems involving a Lennard-Jones fluid and an argon crystal melt.</p></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524005784","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work focuses on the representation of model-form uncertainties in molecular dynamics simulations in various statistical ensembles. In prior contributions, the modeling of such uncertainties was formalized and applied to quantify the impact of, and the error generated by, pair-potential selection in the microcanonical ensemble (NVE). In this work, we extend this formulation and present a linear-subspace reduced-order model for the canonical (NVT) and isobaric (NPT) ensembles. The symplectic reduced-order basis is randomized on the tangent space of the Stiefel manifold to provide topological relationships and capture model-form uncertainty. Using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), we assess the relevance of these stochastic reduced-order atomistic models on canonical problems involving a Lennard-Jones fluid and an argon crystal melt.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.