{"title":"ForestAdvisor: A multi-modal forest decision-making system based on carbon emissions","authors":"Tong Ji , Yifeng Lin , Yuer Yang","doi":"10.1016/j.envsoft.2024.106190","DOIUrl":null,"url":null,"abstract":"<div><p>Effectively balancing carbon emission reduction with economic viability through regional forest management is a significant challenge for global ecosystems. This paper introduces an innovative multi-modal forest decision-making system, integrating deep learning and natural language processing technologies, aimed at optimizing forest management strategies. Experimental validation of this system was conducted in three distinct forested regions. Utilizing a deep learning model, the system analyzed and predicted daily carbon emissions data. The experiments demonstrated remarkable accuracy, with the model achieving a coefficient of determination (<span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>) of up to 0.94, 0.98, and 0.99 across datasets from all three regions, thereby justifying its use for forecasting carbon emission trends over the following months. Subsequently, the system employed natural language processing to assess the importance of various collected forest management strategies. Finally, the system fine-tuned these strategy combinations in response to the predicted carbon emission trends, ensuring flexibility and effectiveness in addressing the complex dynamics of carbon emission fluctuations.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"181 ","pages":"Article 106190"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224002512","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Effectively balancing carbon emission reduction with economic viability through regional forest management is a significant challenge for global ecosystems. This paper introduces an innovative multi-modal forest decision-making system, integrating deep learning and natural language processing technologies, aimed at optimizing forest management strategies. Experimental validation of this system was conducted in three distinct forested regions. Utilizing a deep learning model, the system analyzed and predicted daily carbon emissions data. The experiments demonstrated remarkable accuracy, with the model achieving a coefficient of determination () of up to 0.94, 0.98, and 0.99 across datasets from all three regions, thereby justifying its use for forecasting carbon emission trends over the following months. Subsequently, the system employed natural language processing to assess the importance of various collected forest management strategies. Finally, the system fine-tuned these strategy combinations in response to the predicted carbon emission trends, ensuring flexibility and effectiveness in addressing the complex dynamics of carbon emission fluctuations.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.