A new solution to force analysis including Coulomb friction in mechanism joints

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL Mechanism and Machine Theory Pub Date : 2024-08-26 DOI:10.1016/j.mechmachtheory.2024.105776
{"title":"A new solution to force analysis including Coulomb friction in mechanism joints","authors":"","doi":"10.1016/j.mechmachtheory.2024.105776","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this paper is to propose a novel approximate solution for determining the reactions of joints in mechanical systems, which involves the influence of Coulomb friction. It is widely acknowledged that if Coulomb friction is used in determining an exact solution to the equilibrium equations for a mechanism, then it will involve nonlinear systems of equations. With the abundance of computer tools now available, tasks of this kind, especially numerical computations, are not particularly challenging. However, new analytically tractable approximate methods are still valuable as a straightforward way of solving the problem. Several studies have been carried out in this field to find a simple solution. In this paper, a new approach based on friction circle concept and Babylonian algorithm is developed for various mechanisms, which is exceptionally well-suited for calculating and streamlining the solution process for mechanical systems by eliminating the necessity for iterative steps at each stage of the force analysis.</p></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24002039","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this paper is to propose a novel approximate solution for determining the reactions of joints in mechanical systems, which involves the influence of Coulomb friction. It is widely acknowledged that if Coulomb friction is used in determining an exact solution to the equilibrium equations for a mechanism, then it will involve nonlinear systems of equations. With the abundance of computer tools now available, tasks of this kind, especially numerical computations, are not particularly challenging. However, new analytically tractable approximate methods are still valuable as a straightforward way of solving the problem. Several studies have been carried out in this field to find a simple solution. In this paper, a new approach based on friction circle concept and Babylonian algorithm is developed for various mechanisms, which is exceptionally well-suited for calculating and streamlining the solution process for mechanical systems by eliminating the necessity for iterative steps at each stage of the force analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
包括库仑摩擦在内的机构连接受力分析新方案
本文旨在提出一种新的近似解法,用于确定机械系统中涉及库仑摩擦影响的关节反作用力。人们普遍认为,如果库仑摩擦用于确定机械平衡方程的精确解,那么就会涉及非线性方程组。随着计算机工具的普及,这类任务,尤其是数值计算,已不再具有特别的挑战性。然而,新的可分析近似方法作为解决问题的直接方法仍然很有价值。为了找到简单的解决方案,该领域已经开展了多项研究。本文基于摩擦圆概念和巴比伦算法,为各种机构开发了一种新方法,该方法非常适合机械系统的计算和简化求解过程,省去了每个受力分析阶段的迭代步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
期刊最新文献
Optimizing natural frequencies in compliant mechanisms through geometric scaling Transmission angle of planar four-bar linkages applicable for different input-output links subject to external loads A comprehensive study of the effect of thermal deformation on the dynamic characteristics of the high-speed spindle unit with various preload forces Oriblock: The origami-blocks based on hinged dissection Design and optimization of a planar anti-buckling compliant rotational joint with a remote center of motion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1