Flow of wormlike micellar solutions over concavities†

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Soft Matter Pub Date : 2024-08-22 DOI:10.1039/D4SM00594E
Fabian Hillebrand, Stylianos Varchanis, Cameron C. Hopkins, Simon J. Haward and Amy Q. Shen
{"title":"Flow of wormlike micellar solutions over concavities†","authors":"Fabian Hillebrand, Stylianos Varchanis, Cameron C. Hopkins, Simon J. Haward and Amy Q. Shen","doi":"10.1039/D4SM00594E","DOIUrl":null,"url":null,"abstract":"<p >We present a comprehensive investigation combining numerical simulations with experimental validation, focusing on the creeping flow behavior of a shear-banding, viscoelastic wormlike micellar (WLM) solution over concavities with various depths (<em>D</em>) and lengths (<em>L</em>). The fluid is modeled using the diffusive Giesekus model, with model parameters set to quantitatively describe the shear rheology of a 100 : 60 mM cetylpyridinium chloride:sodium salicylate aqueous WLM solution used for the experimental validation. We observe a transition from “cavity flow” to “expansion–contraction flow” as the length <em>L</em> exceeds the sum of depth <em>D</em> and channel width <em>W</em>. This transition is manifested by a change of vortical structures within the concavity. For <em>L</em> ≤ <em>D</em> + <em>W</em>, “cavity flow” is characterized by large scale recirculations spanning the concavity length. For <em>L</em> &gt; <em>D</em> + <em>W</em>, the recirculations observed in “expansion–contraction flow” are confined to the salient corners downstream of the expansion plane and upstream of the contraction plane. Using the numerical dataset, we construct phase diagrams in <em>L</em>–<em>D</em> at various fixed Weissenberg numbers Wi, characterizing the transitions and describing the evolution of vortical structures influenced by viscoelastic effects.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sm/d4sm00594e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/sm/d4sm00594e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present a comprehensive investigation combining numerical simulations with experimental validation, focusing on the creeping flow behavior of a shear-banding, viscoelastic wormlike micellar (WLM) solution over concavities with various depths (D) and lengths (L). The fluid is modeled using the diffusive Giesekus model, with model parameters set to quantitatively describe the shear rheology of a 100 : 60 mM cetylpyridinium chloride:sodium salicylate aqueous WLM solution used for the experimental validation. We observe a transition from “cavity flow” to “expansion–contraction flow” as the length L exceeds the sum of depth D and channel width W. This transition is manifested by a change of vortical structures within the concavity. For LD + W, “cavity flow” is characterized by large scale recirculations spanning the concavity length. For L > D + W, the recirculations observed in “expansion–contraction flow” are confined to the salient corners downstream of the expansion plane and upstream of the contraction plane. Using the numerical dataset, we construct phase diagrams in LD at various fixed Weissenberg numbers Wi, characterizing the transitions and describing the evolution of vortical structures influenced by viscoelastic effects.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蠕虫状胶束溶液在凹面上的流动。
我们结合数值模拟和实验验证,对剪切带粘弹性蠕虫状胶束(WLM)溶液在不同深度(D)和长度(L)的凹面上的蠕变流动行为进行了全面研究。流体采用扩散吉塞克斯模型建模,模型参数设置为定量描述用于实验验证的 100 : 60 mM 氯化十六烷基吡啶鎓:水杨酸钠 WLM 水溶液的剪切流变学。当长度 L 超过深度 D 和通道宽度 W 之和时,我们观察到 "空腔流 "向 "膨胀-收缩流 "的过渡。当 L≤D + W 时,"空腔流 "的特征是跨越凹面长度的大尺度再循环。当 L > D + W 时,在 "膨胀-收缩流 "中观察到的再循环仅限于膨胀平面下游和收缩平面上游的显著角落。利用数值数据集,我们构建了不同固定韦森伯格数 Wi 下的 L-D 相图,描述了受粘弹性效应影响的涡旋结构的转变和演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Where physics meets chemistry meets biology for fundamental soft matter research.
期刊最新文献
Back cover Chemo-mechanical model of cell polarization initiated by structural polarity. Controlling wall-particle interactions with activity. Viologen-based supramolecular crystal gels: gelation kinetics and sensitivity to temperature. Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1